
 

 

 
 
 

Night Vision and 
Electronic Sensors Directorate 

 
         AMSRD-CER-NV-TR-C258 

 
 
 

Expectation Maximization and Its Application 
In Modeling, Segmentation and Anomaly Detection 

 
 
 
 

  
Approved for Public Release; Distribution Unlimited  

  
 
 

 
  
  

Fort Belvoir, Virginia 22060-5806 



 

  

REPORT DOCUMENTATION PAGE 
c __ 

0UB1io. BJ/}#·OI/18 

.... - ....... · ... -~~- .. . -~-.. , ...... -. ~·_ .. _ I~_-.. __ , ... ---__ ..... _ .. ___ ,_ ... _ .. _~_M .... ' __ .. _~_ .... __ " ... 
"" M._~ __ "'_""_" __ ' __ ""_"'._"'-" "' __ --, .... ,""-.-. .. """-."" .. "'_.--... -._---...,.."""' .... _«-
' . /oGIM&1l1S1"'!1 '-"~ IZ,lIffll ftT c.>Tf Ii "I:mlT T1I'E IJC)oo.T!S IXM'ItiI 

May lOUR The<i. _ 200t; 

4. nnu.lw SlaTITII ~ . fUIIIN; NUNBEIIS 

hpccl,'ioo Maximizmioo and ils ApplicatiOJl ln Modding, Scgme>1ta!ion aOO 
Anomaly DcI~C1ioo 

I)I\JIoOO1-()1 · D·G601 ; 0073 

6.A~SI 

Ri,eoh Ga'llu 

I 1'VIf"'W!IG IJ'I>WbITUI ~_ISI ... 4OOIIESSI'51 L PBlfOAlIU~ OflG>.IZATIlN 
UNIVERSITY OF MISSOUR I _ ROLLA RIPORIIiUW811 
Rolla, Mis"",,,; 

t. SPII.SIJ ~.G I KlIII1lJt!IG ~GUIC,! """Ei5111111 ALOESstlSI l~. sror;u. •• I MONfn_ 
US Anny RDECO M CERDEC Nigh' V isi<~, and Ele<; tll)l1i<; SeilS"" Di="".,c A&£M:llI[l'(IftTNUM8U 

10221 Burbed Road AMSRD·C£R_NV -TR·C258 
Fon Del.ok. Vir~irua 22060 

11. ruWIHDUlI llIlTlS 

,t •. DISIlI~U1Il" l.nl .... lIH SlIUIIOIT 13. msTmIlIT1U~ eID: 
Approved for Puhlie Relc.1!;C; Di'''ibuti<m I;nlimitcd 

A 

'"_'.'" 111 ___ 
Expeaalion M:uimizarion (£.\1 ) is a general purpose . lgoo-itbm for soh'ing maximum likd ihuo<l ~im",iun prul:>lcms in. 
,",'ide varieTy of ,imalions bes, dese.ibed:lS ;ocomplNc <la!a rrot>lcm,. ",., i'lCOll\l>lc,c,ICSS of Ihc dala mayan"" IIuc lu 
missing dala. (J,,,,,,.,ed di,nibu!ions . elc . 0"" such c • ..- is a miu ure modeL ",ilere ,be class associalioo of lbe daI.a j, 
unknlm."n . In Ibex modcb. Ihe EM ~lgo1ilhm is uKd 10 estimate tlJ: pa"'mett~ of parilI!letric mixture diJ.!ributions along wirl: 
Ihcir pr,,"""ili!;o;,. uf o<", urrc'lI:C . In ,h i, ,t..;,.i" ' he EM algurithm is cmplU}'w 10 estimale <Iiffcrem mi~!Ure model' foe raw 
single and nlUI ,i ·band ciCNrO _op<i<al Infu Re~ (! R) data_ The EM ul'dme c'I .... ' ion. for .ingle ", .. ,I mulli ·b;md Gaussian and 
,ingle-band Gamma an<Ilk,a mi"u"" nll:Jdels are discu '>8(:d. (;au"iMt mi~tUJ" ""IIkI,.no ,..."t I',.- !he raw ima,,'C 
""smemalioo of single and multi -band imagery. Tbltt differenl a'IOmaly dec=ion ""' i"';ques ba)<.'tl on EM·bolscd image 
""Smemal;oo are discusS<:<! and e'·al .... ' e<l . The Gamma and &[a mixwre mooel' ~re ~ to nl<Xl<:l 1M delCOio" $la ti$l.;'" uf 
[WU diff.,en! anomaly de!eclOf! . An ad a[lli~e C FAR (COIISI arn False Alarm Ra[e) [ru-esbold ""Ite [ion l>a.sed 00 ~IC n\i~'urc 
mu<leluf lhe derection stat;"!i< hJS been implemented to determine potemial largol local ion,. These mi~lUr. modd .. of 
dele.,ion 5lal i51ic, can al", be used for multi-sensor or muiti-aIIlO,i!h m fusion. The . lgorilhlm have b<en evaloaled mjog 
si!tglo;-b;Ind m;d' ''''a'" lR airborne imagery !,,,, miTlC'W mine fi d d dcte<:liun problem •. 

I., St8JfeT lULlS 15. NIND (I' floGlS 
G~m"'" an<lllc", ",i~'urc modeh. F.M "lgorilhm. Coo ... ..,,! Fal'" Alarm R" le (C FAR), 3en"", '" fo, ;"". ccbolocor i<m $},"em' , mi nefICkl <ku:uion . ...... rnal)' dl.~co:; t",. STOCHASTIC F_\-1. '11'Rt(:t:(>U 
Ima&" ",sme"""ion, SEM_ba..ro a,IOm.ly de'I."C!O!'>. u >C;I.l l)" o,M in,olTt RaJ·e. Dtte<:ri()D 

" SE~ ln CLlSSIfIt. ,KI'I " SHm'Tl~I (:AII(W (l'T..s " SHU""' CllSS":U ~ 1 l!l I .. nUIJ I OF ' BSI1\.\CT 
DlItlP(1l! ~ (I' 18S,~.t:T 

lI:-JCLASS JF IED Ut\CLASSIFIED UNCLASSI FIED /1.'0 "" 

" ... ' .... m_'· ... ..... _ ...... ~ ... m"'" '1t! 



 

Night Vision and 
Electronic Sensors Directorate 

 
        AMSRD-CER-NV-TR-C258 

 
 

Expectation Maximization and Its Application 
In Modeling, Segmentation and Anomaly Detection  

 
A Thesis Presented By 

 
Ritesh Ganju  

 
University of Missouri – Rolla  

 
 

May 2008 
 

Approved for Public Release; Distribution Unlimited  

 
. 

 
 

Countermine Division 
FORT BELVOIR, VIRGINIA 22060-5806 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



 

 
 
 
 
 

EXPECTATION MAXIMIZATION AND ITS APPLICATION IN 

MODELING, SEGMENTATION AND ANOMALY DETECTION 

 
by 
 
 

RITESH GANJU 
 

 
A THESIS 

 
Presented to the Faculty of the Graduate School of the  

 
UNIVERSITY OF MISSOURI – ROLLA 

 
In Partial Fulfillment of the Requirements for the Degree 

 
 
 

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING 
 

2006 
 

Approved by 
 
 
 

_______________________________           _______________________________ 
Dr. S. Agarwal, Advisor Dr. R. J. Stanley 

 
 
 

_______________________________ 
Dr. V. Samaranayake 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                  © 2006 

Ritesh Ganju 

All Rights Reserved 



 iii

ABSTRACT 

          Expectation Maximization (EM) is a general purpose algorithm for solving 

maximum likelihood estimation problems in a wide variety of situations best described as 

incomplete data problems. The incompleteness of the data may arise due to missing data, 

truncated distributions, etc. One such case is a mixture model, where the class association 

of the data is unknown. In these models, the EM algorithm is used to estimate the 

parameters of parametric mixture distributions along with their probabilities of 

occurrence. In this thesis, the EM algorithm is employed to estimate different mixture 

models for raw single and multi-band electro-optical Infra Red (IR) data. The EM update 

equations for single and multi-band Gaussian and single-band Gamma and Beta mixture 

models are discussed. Gaussian mixture models are used for the raw image segmentation 

of single and multi-band imagery. Three different anomaly detection techniques based on 

EM-based image segmentation are discussed and evaluated. The Gamma and Beta 

mixture models are used to model the detection statistic of two different anomaly 

detectors. An adaptive CFAR (Constant False Alarm Rate) threshold selection based on 

the mixture model of the detection statistic has been implemented to determine potential 

target locations. These mixture models of detection statistics can also be used for multi-

sensor or multi-algorithm fusion. The algorithms have been evaluated using single-band 

mid-wave IR airborne imagery for mine and mine field detection problems. 
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1. INTRODUCTION 

1.1. THE EM ALGORITHM 

          The EM algorithm is a technique for maximum likelihood estimation in situations 

best described as incomplete data problems [1]. It is so called because of its two 

important steps—Expectation (E step) and Maximization (M step). The EM algorithm 

seeks to iteratively compute the maximum likelihood estimates and it is very useful in 

situations where algorithms such as Newton-Raphson, Prediction-Error, Sliding Window 

and Least-Squares turn out to be tedious and time consuming. EM has specifically gained 

importance because in certain incomplete data situations, the maximum likelihood 

estimation can be difficult due to the absence of the data. If the same problem is 

converted to a complete data problem with additional unknown parameters, then the 

problem can be solved more easily using EM iterations. 

          Although these incomplete data problems can arise in different situations, this 

thesis will study the incomplete data problems as applied to mixture models. In 

background modeling, the background data can be characterized as coming from a set of 

different probability distributions. This problem is an incomplete data problem in the 

sense that the class wise association of the data is unknown. Also the proportions of 

different classes are not known. Thus in these situations the EM algorithm can be applied 

to distribute the data into classes and to find the class proportions and parameters of 

distribution in a parametric mixture model. The EM algorithm and its concepts are 

discussed in detail in Section 2 of this thesis. 

 

1.2. BACKGROUND MODELING 

          Background modeling is an efficient way to characterize the background data with 

certain probability distributions. These distributions are in the form of mixture models. 

Because the data sometimes is of high dimensionality, non-parametric methods of density 

estimation, such as kernel-based methods, would require large amounts of training data. 

This makes it important for us to study modeling using parameter estimation. Also, in 
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certain situations parametric modeling makes the analysis more robust. This is because if 

the system has been modeled using parametric distribution, then any unpredictability can 

be accounted for by adjusting the parameters of the model based on knowledge from past 

modeling experiences [6].  

          In many problems such as minefield detection, target recognition and echolocation 

systems, background characterization is required for a proper interpretation and analysis 

of the data. For example the EM-based anomaly detectors use the mixture model 

framework, where the concept of pixel membership is used to detect anomalies in the 

data. Modeling of detection statistic can also be performed. The detection statistic 

represents the non-homogeneities and spatial correlation in the data, and therefore its 

modeling into parametric distributions is very important. Modeling of detection statistic 

also helps in performing adaptive Constant False Alarm Rate (CFAR) threshold selection, 

which is important for practical detection systems and also for sensor fusion [7]. 

Modeling of the detection statistic is discussed in Section 5 of this thesis. 

          Background modeling is useful in image segmentation where the image is 

segmented into various regions. Background modeling is also used in anomaly detection. 

Here, the concept of data membership is exploited to separate the anomalies that are 

statistically different from the background. These concepts are discussed in Sections 4, 5 

and 6 of this thesis. 

 

1.3. APPLICATIONS OF BACKGROUND MODELING 

          1.3.1. Echolocation Systems. In the echolocation systems, radio and sound waves 

are transmitted, and from the echo of the reflected waves, it is possible to get information 

such as the location, direction and size of the target. In these systems, it is sometimes 

desirable and needed to estimate the statistical behavior of the target and the environment 

in which it operates. There are three main motivations for this [6]: 

 

(i) An appropriate setting of the detection threshold of an echolocation system is     

required to control the false alarm rate. The reason for this is that in many 
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active SONAR and RADAR systems, the decision to declare the presence of a 

target depends on the amplitude of the matched filter output exceeding a 

certain threshold. The estimate of the background probability density function 

of the matched filter amplitude is required if the threshold is to be determined 

by parametric signal processing techniques [7]. 
 

(ii) It is advantageous if a system detection performance can be predicted by 

means of measurement of the historical data. For example, if the background 

is characterized using parametric distributions, then in the case of unfavorable 

circumstances, the parameters (such as frequency and wavelength) can be 

adjusted to combat those unfavorable circumstances. 
 

(iii)  Knowledge of the background statistics may be used to improve the design of   

the detector in an optimal sense. 

 

          1.3.2. Automatic Target Recognition (ATR) Systems. ATR systems generally 

have a multistage architecture for target detection or recognition. The first stage is 

generally a pre-screener. It selects the targets at a given CFAR that are passed on to the 

next stage, which is the discrimination stage. The discrimination stage is basically a false 

alarm mitigation scheme that rejects the false alarms based on certain features [34], [35]. 

Finally, the classification stage is used to detect the targets. The need for modeling comes 

in the pre-screener stage where an efficient modeling can be used for adaptive CFAR 

threshold selection. This helps in the selection of the optimum number of targets that are 

then passed to the next stage.  

 

          Also in these systems, understanding of the battlefield would be greatly enhanced 

if the surveillance systems used could also provide automated, reliable classification of 

objects in the areas surveyed. The volume of the data produced by surveillance makes it 

infeasible for the human interpretation of the data. The RADAR Range Profiles (RRPs) 

data are used in the ATR systems. Since the data are of a high dimensionality, non-

parametric methods of density estimation, such as kernel-based methods, would require a 
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large amount of training data. Approximating the probability density by a Gaussian 

distribution alone may make the analysis rigid.    

 

          In these cases, mixture models provide a parametric method that is flexible for the 

modeling and analysis, as this would help in modeling a wide range of possible densities, 

including multi-modal densities. In case of the RADAR data, there is a strong motivation 

for the mixture model to unscramble returns from multiple targets [6]. In order to form 

the mixture models using parametric distributions, an efficient algorithm is needed. The 

EM algorithm is one such algorithm that efficiently models the background data with the 

probability models. 

 

1.4. MINEFIELD DETECTION  

          In minefield detection, an efficient classification and characterization of the 

background is to be done. The aim is to separate the mines (anomalies) statistically from 

the background. Following are the motivations for background analysis:  

 

(i) The detection performance of any system depends on the background 

characteristics and terrain. A basic knowledge of an anomaly detector such as 

an RX algorithm shows that the performance over different types of 

backgrounds depends on the correlation and non-homogeneities in the 

background. Thus in order to quantify the detector performance, it is 

necessary to model the detection statistics of the anomaly detector into 

probabilistic models that would help improve the performance of the anomaly 

detector.  
 

(ii) Modeling helps to statistically differentiate the background and therefore 

helps in forming guidelines that would help in studying the detectability and 

likelihood of mines in different types of backgrounds and terrains. 
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(iii) Modeling also helps in extensive analysis of threshold determination for a 

given CFAR. This threshold is used to separate the background from the 

targets. 

 

          Automatic/Aided Target Recognition (ATR/AiTR) systems are often airborne in 

nature. Collection of data from a large area mandates the development of these systems. 

These systems have a pre-screening stage that is required to detect potential target 

locations. Background modeling of the detection statistic is very useful in the pre-

screening stage, where an adaptive CFAR threshold selection is performed to select a 

threshold based on detection statistics. The detection statistic represents non-

homogeneities and spatial correlation of the data. Therefore, the adaptive threshold 

selection based on detection statistic helps in selecting a threshold that is invariant to the 

background the detector is operating in.    

           

          Thus, it is evident that minefield detection forms an important application of 

background modeling. This application is explored in greater details in this thesis.  

 

1.5. OVERVIEW OF THE THESIS  

          In Section 2, the EM algorithm is introduced. The concept and mechanism of the 

EM algorithm is studied in detail as the EM algorithm is the backbone of the mixture 

model architecture. The development and the mathematical formulation of the algorithm 

is presented. 

 

          In Section 3, the concepts of the Image Segmentation using the EM algorithm are 

presented, where the image is segmented into regions that are statistically different. The 

region belonging to a particular class appears as a separate segment in the image. 

 

          Section 4 covers the various anomaly detectors that have been implemented based 

on mixture modeling. The mechanism and concept of the different type of EM-based 

anomaly detectors is presented. 
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          Section 5 introduces various mixture models that have been implemented to model 

the detection statistic. In order to test the modeling performance of these mixture models, 

the Chi-Square test is described that evaluates the modeling performance of a given 

distribution. The two parameter Beta and Gamma mixture models are tested on two 

different statistics for extensive airborne data. The performance of the mixture models is 

then compared. 

 

          Section 6 discusses the automatic CFAR threshold selection from the modeling 

results. These thresholds are calculated for a given CFAR value. These thresholds that are 

determined from the modeling results are used to determine the targets that are candidates 

for further processing. 

           

          Appendix—A lists various mixture models implemented along with their 

distributions and the update equations. It also shows the use of the update equations to 

estimate the parameters of the mixture models.  

 

          Appendix—B discusses different tests that evaluate the goodness of fit of the 

mixture models implemented.   
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2. THE EM ALGORITHM 

 

2.1. EM—AN INTRODUCTION 

          The EM algorithm is a general purpose algorithm for maximum likelihood 

estimation in a wide variety of situations best described as incomplete data problems. The 

incomplete data problems arise, for example, where there are missing data, truncated 

distributions, censored or grouped distributions and also in situations where the missing 

data are not evident. One such case is a mixture model, where the class association of the 

data is unknown. The data is assumed to belong to a parametric mixture model but the 

proportion of each class is unknown.  

 

          It is to be noted that some problems at first sight may not seem to be incomplete 

data problems but they actually are. Direct solution of these problems can be tedious and 

unstable. There can be a great reduction in computation if the problem could be 

converted to a complete data problem because in these situations, the complexity of the 

Maximum Likelihood (ML) estimation reduces if the complete data is provided because 

the log-likelihood or the cost function for complete data problem is often of a nice and 

tractable form. However, in some cases the ML equations do not have explicit solutions, 

and therefore one has to resort to some iterative methods to arrive at the solution. EM is 

one such efficient iterative technique. The conversion of incomplete data problem into a 

complete data problem is discussed more in Section 2.5. 

                         

2.2. MOTIVATION FOR EM  

          Many attempts have been made to estimate the parameters using the training data. 

In literature, this has been referred to as a supervised approach. One major drawback of 

this type of method is that it is unrealistic because many times the training data with 

reliable class association is unavailable. Therefore, attempts have been made to estimate 

the parameters using some unsupervised technique, i.e. the one that does not require the 

training data. EM is one such technique. Statisticians have used EM to estimate 
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parameters for the incomplete data problem because EM works very well for this type of 

practical problems. In recent times, there has been considerable interest in stochastic 

model-based image segmentation. Here the image is separated into a set of disjointed 

regions, and each region is associated with one of a finite number of classes. Each class is 

assumed to have been modeled as a random field. Because these random fields are often 

parametric models, an important problem that one is faced with is regarding parameter 

estimation. Clearly, the parameter estimation problem here is an incomplete data 

problem, because the observed image is a mixture of several data classes with the class 

status of each pixel unknown, which means that the correct segmentation is not known. 

 

2.3. EM—A BRIEF HISTORY  

          The name ‘EM’ was coined by Dempster, Laird and Rubin in a paper in 1976 and 

was published in the Journal of Royal Statistical Society in 1977 [48]. Because the idea 

behind the EM algorithm is very general, algorithms like it were formulated and applied 

in a variety of problems even before the paper was presented. However, it was in the 

paper presented by Dempster, Laird and Rubin that various ideas were synthesized and a 

general theory was developed. The various references to literature on an EM-type of 

algorithm can be found in [1]. 

 

2.4. EM—THE CONCEPT 

          The EM algorithm estimates the parameters of the mixture model iteratively, 

starting from some initial guess. Each iteration consists of the following two steps: 

 

Step 1: (Expectation): This step tries to find the distribution of the complete data given 

the known values of the observed data and a current estimate of the parameters. The 

estimation step basically involves the formulation of a ‘Q’ function (to be described 

later), which is basically the estimation of the likelihood function of the complete data 

given the observed data and the current fit of parameters (i.e. the parameters obtained in 

the maximization step of the previous iteration). 
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Step 2: (Maximization): This step re-estimates the parameters to be those with maximum 

likelihood under the assumption that the distribution found in the estimation step is 

correct. The maximization step is so called because it maximizes the ‘Q’ function 

formulated in the estimation step to obtain a new set (fit) of parameters. 

 

          Each step is carried out in the above order until the terminating condition is 

reached. The terminating condition can be assumed to have been reached when the log-

likelihood function of the complete data does not show significant improvement over its 

previous value. It can be shown that each successive iteration either improves the true 

likelihood or leaves it unchanged (if a local maximum has already been reached) [1]. 

 

2.5. MATHEMATICAL FORMULATION OF EM 

Let us suppose that for any practical situation: 

          x  = Complete Data (observed plus unobserved), 

           = Observed (incomplete) data, y

           = Additional data which is missing (or is unobservable). z

 

          Also  is the probability density function (pdf) of the observed incomplete 

data, where ‘

(y,φf )
ϕ ’ is the set of parameters that characterize the pdf.  

 

          The problem is to estimate ‘ϕ ’ based on the incomplete information represented 

by the observed data, ‘ .’ The likelihood function,y ( )yφ£ | , for the parameter, ‘ϕ ’ given 

‘ y ’ can be formed as: 

 

( ) (y,φfyφ£ )=| .                         (2.1)  

           

Log-likelihood function, ( )[ yφ£ |ln ]

]

 can be formed where ‘ln’ is the natural logarithm. 

  

( )[ ] ( )[ y,φfyφ£ ln|ln = .            (2.2) 
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          A log-likelihood function is considered because it makes the analysis and 

calculations easier without changing the optimization problem at all. 

 

          The maximum likelihood estimation problem is complicated by the fact that only 

the incomplete data is at hand. Thus in order to ease the problem, the incomplete log-

likelihood function is converted to the complete log-likelihood function by adding the 

missing information, ‘ z .’ The log-likelihood of the complete data, { } , is defined 

as: 

{xzy =, }

 

( )[ ] ( )[ ] ( )[ ]φxfxφ£zyφ£ cc |ln|ln,|ln ==  ,           (2.3) 

 

where  is the likelihood function of the complete data. (φ|x£c )

)

 

          Therefore the EM algorithm approaches the problem of solving the incomplete data 

likelihood function indirectly by proceeding iteratively in terms of the complete data log-

likelihood function, . As the complete data is unobservable, it is replaced by its 

conditional expectation given the observed data, and the current fit of parameters, i.e 

( xφ£c |

 

( )[ ] ( ) ( )[ ]ϕϕϕ ,|.|ln|ln yzfyfxf = .                                                                  (2.4) 

 

          This step is discussed in more detail in specific context of Gaussian mixture model 

for image segmentation in section 3.4.  

 

          Starting from some initial guess of the parameters, ‘ ,’ the EM algorithm iterates 

between the two steps, known as the ‘E’ and ‘M’ steps. These are described as follows: 

0ϕ

 

E (Estimation) Step: This step forms the ‘ ’ function by estimating the log-likelihood of 

the complete data given the observed data and current fit of parameters. The current fit of 

parameters is the set of parameters that is obtained from the maximization step of the 

previous iteration.  

Q
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The ‘ ’ function is formulated as:  Q

 

( ) ( ){ }[ ]k
c

k y,φφ|x£EQ k |ln,
ϕ

ϕϕ =  ,          (2.5) 

 

where ‘ ’ represents the current set of parameters and ‘ ’ represents the expectation 

of the log-likelihood of the complete function over ‘ .’  

kϕ kE
ϕ

kϕ

 

M (Maximization) Step: This step maximizes the ‘ ’ function in Equation (2.5), to get a 

new set of parameters, so that,  

Q

 

( )[ ] 0,
=⎥

⎦

⎤
⎢
⎣

⎡
∂

∂
ϕ
ϕϕ kQE .                                                                                           (2.6) 

 

          The new value of the parameter ‘ϕ ’ is given by: 

 

( ) ( )[ ]
⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
+= −+

ϕ
ϕϕϕϕ

k

m
kk QEI ,11  ,          (2.7) 

 

where ‘ ’ is the information matrix, calculated at ‘ .’ Information matrix for different 

mixture models is discussed in more detail in appendix-A. 

mI kϕ

 

          Once the parameters, ‘ ,’ are obtained in the kth iteration, the ‘E’ step is carried 

out again, and the ‘Q ’ function is updated with these new parameters to form the new 

estimate of the log- likelihood of the complete data. The ‘M’ step is then carried again for 

the new updated ‘Q ’ function to yield a more updated set of parameters, ‘ ,’ and the 

process is carried on until the difference, 

kϕ

1+kϕ

( ) ( )xφ£xφ£ k
c

k
c ||1 −+ , changes by an 

arbitrarily small amount. At this point, the most likely set of parameters is reached. This 

condition is often used as the terminating condition. 
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2.6. A VARIANT OF EM—STOCHASTIC EM 

          One major weakness of EM is its vulnerability to the initial values, ‘ .’ If these 

are “far” from the actual values, then there may be cases when the algorithm does not 

converge to the actual value. This happens because the EM algorithm sometimes gets 

trapped into local maxima, (if it finds one) before the actual global maxima. These are 

known as saddle points. If this happens, then the parameter values might get stuck to 

these saddle points, and therefore the parameters may be incorrectly estimated. 

0ϕ

 

          The weakness is partially removed with SEM that resembles EM. In case of 

standard EM, the indicator variables are obtained using maximum likelihood and the 

class probabilities, ‘ .’ In case of SEM the value of these indicator variables is obtained 

based on a draw using the current class probabilities, ‘ .’ This assigns each sample to 

one of the classes probabilistically in proportion to the class probabilities, ‘ .’ Because 

of the random nature of SEM, it does not remain confined to a local maxima and instead 

is more likely to progress towards global maxima. 

kϕ

kϕ

kϕ

 

          In image modeling, another form of EM, known as SEM-EM, is often used. This is 

so called because SEM is used to run for the initial major part of the iterations (say 75%). 

After this initial “warm up”, EM takes over. It is assumed that after using SEM for 75% 

of the iterations, the results are close to the actual values. The EM then runs until the end, 

converging to global maxima. The set of parameter values obtained in the last certain 

number of iterations (for example 100) are averaged to give the values of final converged 

parameters. 

 

2.7. CONVERGENCE PROPERTIES OF EM 

          As seen in the previous section, it is possible for the parameters to converge to a 

saddle point rather than a global point. This depends a lot on the type of log-likelihood 

function. If the log-likelihood function is uni-modal, then the convergence of the 

likelihood function and the parameters is unique. If the likelihood function is not uni-
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modal, then in that case the likelihood function and the parameters might converge to 

some saddle point.  

 

          The situation can be analyzed by using the analogy of a round bowl. The likelihood 

surface can be thought to be a bowl. The bowl can have a steep or flat bottom. If the bowl 

has a steep bottom, then any round ball that is put at a certain position inside the bowl 

finally reaches the steep bottom after certain time and remains there. However, if the 

bottom is flat, then the ball might reach the flat bottom and circle around the flat bottom 

surface rather than reaching a particular point at the bottom. 

 

          Similarly, it has been observed in some cases that if the number of parameters in a 

distribution is large, then the parameters tend to undergo periodic oscillations after a 

certain number of iterations. This happens because the likelihood surface tends to become 

flat as the number of parameters in a distribution is large. Thus rather than converging to 

a steady value, the parameters of such type of distribution tend to converge to a range. 

When this happens, EM is said to converge to a circle rather than a single point [1].  

 

2.8. SELECTION OF NUMBER OF CLASSES 

          Choosing the number of classes is an important issue in the EM-based applications. 

However no fully general and satisfactory solution seems available. The most common 

approach of selecting the number of classes is based on the log-likelihood of the samples 

given the number of classes [41]. Let ‘ x ’ be the data, ‘g’ be the number of classes and 

‘ ’ be the parameters of the mixture model that are estimated from the data. Then a 

criteria based on log-likelihood has been given in [42] using the Bayesian Information 

Criteria (BIC) approximation. This is given by:   

∧

ϕ

( )nNgxpBIC p log,|log2 −⎟
⎠
⎞

⎜
⎝
⎛=

∧

ϕ                                                                    (2.8) 

Here,  is the number of parameters estimated from the data, and n is the number of 

samples. 

pN

 



 14

          The larger the value of BIC, the better the model is according to this criterion. 

However in order to incorporate this criterion, one has to run the algorithm for certain 

number of times (each time with a different number of class) and then has to select the 

number of classes that gives the maximum value of BIC. This is time consuming and 

therefore the number of classes is generally pre-specified. The BIC criterion for selecting 

the number of classes is discussed in detail in [42]. 

 

2.9. APPLICATIONS OF EM 

          The EM algorithm has seen wide applications in different fields. Some of the 

applications where the EM algorithm and its variants are widely used are the following: 

 

          2.9.1. Background Modeling. The applications of the EM algorithm in ATR 

systems, echolocation systems and minefield detection have already been discussed in 

Section 1. In these systems, the EM algorithm helps to characterize the background, 

which then helps to conduct different types of analysis. Modeling of detection statistics 

gives an insight to the nature of the background. The concepts and applications of 

background modeling and modeling of detection statistics are discussed in Sections 3, 4, 

5 and 6 of this thesis.         

                                                                                                                                                                        

          2.9.2. Speech Recognition. The Automatic Speech Recognition (ASR) systems 

have been making significant progress, but an important consideration is in its robustness 

to different speaking styles and environments. ASR systems trained in one environment 

perform poorly in the other environments due to a mismatch between testing and training 

conditions. These mismatches are caused by different speaking styles, the presence of 

noise and insufficient characterization of the speech signal [22]. 

 

          To reduce this mismatch, mappings and transformations are done between the test 

utterances and original models. Let ‘ xΛ ’ be a set of trained Hidden Markov Models 

(HMMs), where the subscript ‘ x ’ denotes that the models are trained on given set of 

training data, {X}. Let the test utterance, ‘Y,’ be given as: { }nj yyyyY ,........,...,, 21= . The 
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problem is to recognize the word sequence, ‘W,’ from ‘Y,’ where ‘W’ is given by 

. { }LwwwW ,........, 21=

( )YFX v=

v

 

          Any mismatch between ‘X’ and ‘Y’ results in error in recognizing the word 

sequence, ‘W.’ In order to reduce this mismatch, ‘Y’ is mapped to ‘X’ using the 

transformation function, ‘ ’ such that, vF

 

.                         (2.9) 

  

          Here, ‘ ’ are the parameters of the transformation function, ‘ .’ The mismatch 

can be reduced by finding the parameters ‘ ’ such that the likelihood, 

vF

v ( )xvYp Λ,|  is 

maximized. Therefore ‘ ’ can be obtained as: v

 

( )xvY Λ,|
v

pv' = maxarg

vF

.                     (2.10) 

 

          Thus ‘v’ can be obtained using the EM algorithm, and the transformation function, 

‘ ,’ can be obtained. This decreases the distortion caused by the mismatch. A discussion 

on this approach can be found in [43] and [44].  

 

          2.9.3. Medical Imaging. Magnetic Resonance (MR) imaging is an advanced 

medical imaging technique providing rich information about the human soft tissue 

anatomy. For brain MR images, the only method developed to date for statistical 

segmentation of brain MR images is based on the finite mixture (FM) model, in particular 

the finite Gaussian mixture (FGM) model where the Gaussian distribution is assumed 

because of its simple mathematical form and the piecewise constant nature of ideal brain 

MR images [40]. The mixture model consists of different tissue classes, especially gray 

matter (GM), white matter (WM) and cerebrospinal fluid (CSF). The EM algorithm is 

used to estimate the parameters of the mixture model, and assign class labels to all the 

pixels.  It then segments the image by representing all samples that belong to a particular 
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class as a distinct region in the image. The discussion on EM model and image 

segmentation in MR imaging can be found in [21]. 

 

          2.9.4. Dairy Science. Quantitative variation in traits that change with age is 

important to animal breeders. Often biological traits such as body size, weight or growth 

are measured at various times or ages. These traits are highly correlated. A (co)variance 

function is a continuous function that represents the variance and covariance of such 

traits measured at different points of time. The (co)variance function is useful when 

spatial or temporal data are modeled and can be linked to time-dependent phenomena 

such as growth of lactation. Using these (co)variance functions, information such as milk-

yield etc. can be predicted for different points.  

 

          Let ‘∑’ denote the covariance matrix calculated at different times and ‘ϕ ’ 

represent the matrix of polynomial functions evaluated at these times then the observed 

covariance matrix can be given by: 

 

∑ = ,                       (2.11) TK ϕϕ ..

 

where ‘ ’ denotes the transpose of ‘Tϕ ϕ .’ Here ‘K’ denotes the coefficients of the 

(co)variance function. ‘K’ can be estimated as: 

 

( )∑ −−= .11 TK ϕϕ                          (2.12) 

 

Once ‘K’ is obtained, it is used to get updated covariance matrix, ∑º. This covariance 

matrix is then used to give a better estimate of ‘K.’ Thus the EM algorithm is used to 

estimate the (co)variance function coefficients for different measurements such as milk, 

fat test-day yield etc. Estimation of the (co)variance function using EM has been 

discussed in [20], [38] and [39]. 
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          2.9.5. AIDS Epidemiology. The forecasting of future AIDS incidences using the 

estimates of past and present HIV incidences is very important for public health planning. 

Data relating to HIV infection is incomplete due to missing information and delayed 

reporting etc. Also there is an unknown time interval between the infection and diagnosis. 

All these aspects lead to the incompleteness of the problem and therefore in order to 

forecast the AIDS incidence, the EM algorithm is used [1], [18]. 

 

Let us suppose that: 

 

          At = Number of cases diagnosed as AIDS during the month ‘t.’ 

          Nt = Number of individuals infected with HIV in month ‘t.’ 

          Pk = probability that duration of infection is ‘k’ months. 

 

Clearly, ‘k’ denotes the period between infection and diagnosis, in months. 

 

∑
=

+−=
t

c
ctct PNA

1
1 .           (2.13) 

 

Let, 

 

( )tt AE=μ , 

( )cc NE=λ . 

 

where, ‘E’ denotes the expectation.  

 

The prediction of AIDS incidences for any future month, ‘t,’ is given by: 

 

.
1

1∑
=

+−=
t

c
ctct Pλμ           (2.14) 
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          The parameter, '' cλ  is estimated using EM techniques. Thus this helps in the 

forecasts of the future AIDS incidences. The methods for estimating '' cλ  are discussed in 

[37]. 

 

          2.9.6. Census Surveys. Record linkage, or computer matching, is a means of 

creating and updating information that may be used in surveys. It serves as a means of 

linking individual records via name and address information from differing 

administrative files. Various types of personal information such as name and address, is 

linked using mathematical models and this helps in the proper analysis of the records. 

 

          The record linkage classifies pairs in product space ‘AxB’ from two files ‘A’ and 

‘B’ into a set of true matches, ‘M’ and set of non-matches, ‘U.’ In order to find if the 

given pair forms a match (or a link), the following ratio is evaluated [19]: 

 

)|(
)|(

Up
MpR

α
α

=  ,          (2.15) 

 

where ','α  represents the pair under consideration.  

 

To find if ''α  forms a valid link, the following decision rule is applied on ‘R.’ 

 
If R > Tu, then designate pair as a link. 
 
If Tl ≤ R ≤ Tu, then designate pair as a possible link and hold for review 

 
If R < Tl, then designate pair as a non-link. 

 

          Here, ‘ ’ and ‘ ’ are the thresholds determined from prior information. The ratio  uT lT

 

          ‘R’ is known as the matching parameter. It has been presented in [36] that these 

matching parameters can be estimated directly from the data using EM. 
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2.10. CONCLUSIONS 

          This Section discussed the underlying concepts of the EM algorithm. It also 

showed the mathematical formulation of the algorithm. The application of the EM 

algorithm in estimating the mixture model is discussed. Applications of the EM algorithm 

in various fields are also presented.  
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3. IMAGE SEGMENTATION USING EM 

 

3.1. INTRODUCTION 

          Image segmentation is the process of division of an image into distinct region. The 

level to which this division is carried depends on the type of details needed. Image 

segmentation algorithms are generally based on the following criteria [24]:  

 

          (i) Segmentation based on similarity 

          (ii) Segmentation based on discontinuity 

 

          In segmentation based on similarity, all regions that are similar as per some criteria 

are classified as one region, whereas in the case of segmentation based on discontinuity, 

certain discontinuity criteria such as edges are used to divide images into regions. This 

thesis presents a technique for segmentation based on similarity using EM approach. The 

criterion of similarity is statistical in nature, i.e. regions that are statistically similar are 

classified as one region. Single pixel level segmentation and segmentation based on 

spatial distribution are performed. In case of segmentation based on spatial distribution, 

spatial correlation of the data is captured.  

 

          In the case of a minefield detection system, the sensor is selected so that they have 

good signal for the objects of interest. Thus infrared imaging is used to detect mines with 

good thermal signatures. Image segmentation can also be used to detect anomalies. It is 

because the anomalies, due to their statistical nature, would most likely belong to a class 

that is well separated from the background class. This would help in their detection using 

the concept of pixel membership. This is the topic of discussion of Section 4.   

 

3.2. SEGMENTATION—SINGLE PIXEL 

          In stochastic model-based image segmentation, an image is divided into regions. 

Each region is associated with one of a finite number of classes and each class comes 

from a pre-defined number of classes that are modeled as random distributions. Because 
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all these distributions are parametric models, a problem of parameter estimation often 

arises. The EM algorithm is an excellent technique to estimate parameters in problems 

that have some information missing. Once the parameters are estimated, all samples can 

be associated with classes. Therefore the EM algorithm can be used to segment the 

image.       

 

          Let the observed data vector be, { }nj yyyyy ,........,...,, 21=  assuming ‘n’ 

observations. In the image segmentation model, the pixels are considered as samples. 

Therefore ‘ ’ denotes the pixel intensity of the jth pixel. In the process of image 

segmentation, as previously described, each pixel intensity belongs to a particular class 

that is unknown. Additional unobserved variable ‘ ’ is added to the unknown variable 

list which is an indicator variable that is one or zero according to whether ‘ ’ (j = 1, 2... 

n) arose from the ith (i = 1, 2... g) class. 

jy

ijz

jy

 

          It is assumed that each class has a Gaussian distribution with the unknown mean 

and variance so that the probability density function, pdf, for the ith class is given by: 

 

( ) ( )2
iii , σy; µNyp =  , where i = 1, 2...g.                     (3.1) 

 

Then the pdf of the observed data, ‘ y ,’ can be written as:  

 

( ) ( )∑
=

=
g

i

iii ,σy;μNπφyf
1

2|  ,    { }2,, iii σμπϕ = ,                                                                      (3.2) 

 

where ‘ iπ ’ is a coefficient that denotes proportion of the sample due to the ith class and 

 

∑
=

=
g

i

iπ
1

1.                           (3.3) 

 

 



 22

          Following the lines of the prior discussion in Section 2.5, the log-likelihood 

function of the complete data is formed as. 

 

( )[ ] ( )[ ] ( )[∑∑
= =

==
g

i

n

j
iijiijc ,σ;μyNπzxφ£xf

1 1

2ln|ln|ln ϕ ]

]

.                   (3.4) 

 

This log-likelihood function can also be written as: 

 

( )[ ] [ ] ( )[∑∑∑∑
= == =

+=
g

i

n

j
iijij

g

i

n

j
iijc ,σ;μyNzπzxφ£

1 1

2

1 1

lnln|ln .                   (3.5) 

 

          As the above likelihood function is linear in ‘ ,’ the ‘E’ step on the (k+1)th 

iteration requires the calculation of the expectation of ‘ ,’ given the observed data, ‘

ijz

ijz y .’ 

This expected value of ‘ ’ is obtained as: ijz

 

[ ] ( )
), φf(y
, σ; µyN

yzEz k
j

(k)
i

(k)
ij

k
i

ij
k
ij k

2

|
π

ϕ
==  ,                                     (3.6) 

 

where is the Expectation operator over the current parameter ‘ ,’ and          

    

kE
ϕ

kϕ

( ) ( )∑
=

=
g

i

(k)
i

(k)
ij

k
i

k
j , σ; µyNyf

1

2, πϕ  ,         (3.7) 

 

gives the distribution of the observed data, ‘ ,’ for the kth iteration. The ‘Q’ function is 

then written as: 

jy

 

( ) ( ){ }[ ]00 |ln, 0 y,φφ|x£EQ cφ
=ϕϕ .                       (3.8) 
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          On maximizing the ‘ ’ function, the update equations are obtained for the various 

parameters. These equations are provided in appendix—A.1.1.  

Q

 

          Therefore with the iteration of the expectation and maximization step, the EM 

algorithm not only gives a good estimate of the parameters of the class distribution but 

also tells about the proportion in which these classes are mixed. This is then used to 

model the data. The above model that represents the observed data as a mixture of classes 

is also sometimes referred to as a mixture model because it represents a mixture of ‘g’ 

classes, each with a pdf of its own. In the above problem all classes are assumed to have a 

Gaussian distribution with each class having a mean and variance of its own. The 

distribution can be any parametric distribution. For the modeling of the background, 

pixel-level classification has been done using Gaussian mixture model. In case of 

modeling of the RX statistic, the classification has been done on the RX detection 

statistic using Beta and Gamma distributions as shown in Section 5. 

 

3.3. SEGMENTATION—SPATIAL DISTRIBUTION 

          In order to capture spatial correlation, 5-dimensional data is generated from the 

spatial neighborhood at a distance of two. Figure 3.1 shows a scheme for sampling the 

data to capture the local spatial variations of the data. Pixels at a distance of two are 

considered since 4-neighborhood pixels are expected to be highly correlated and do not 

capture useful spatial characteristics of the local neighborhood. Taking a large 

neighborhood with more samples increases the dimensionality of the model which is 

computationally expensive. 

 

          Since in this case the segmentation is based on spatial distribution, segmentation 

reflects spatial correlation in the data. The class assignment depends not only on the gray 

value of the pixel but also on the gray values of the nearby positions with respect to the 

center pixel. The Gaussian mixture model discussed in Section 3.2 is still valid with the 

only difference that a multivariate normal distribution is used to define the mixture 
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model. The update equations for multivariate Gaussian mixture model are provided in 

appendix—A.1.1. 

 

 

3 

2 1 4 

5 

                                     Figure 3.1. Spatial Distribution of the Pixels.         

                                         

3.4. PIXEL LEVEL CLASS ASSIGNMENT  

          Assuming there is a 512x640 image, it has 327,680 samples, (  to ). If the 

given image is modeled by ‘g’ classes, then each one of these samples can be assumed to 

belong to one of the ‘g’ classes. Before the start of the algorithm, each pixel is assigned a 

class randomly with equal probability, since there is no estimate of the initial parameters. 

It is to be noted here that the information known to the algorithm are the observed data, 

the initial guessed values and the number of classes. After the algorithm converges, array 

of indicator variables, ‘ ,’ can be used to assign classes to all the samples. If there are 

‘n’ samples and ‘g’ classes then the ‘ ’ array has ‘g’ rows and ‘n’ columns. Consider 

the jth column (j = 1 to n). The ith row (i = 1 to g), of the jth column represents the 

probability of the jth sample belonging to the ith class. The row that has the maximum 

probability for a given column, j, represents the class assigned to the jth sample. The 

segmentation is achieved by representing all samples that belong to a particular class as a 

distinct region in the image. 

1y 327680y

ijz

ijz
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3.5 RESULTS—SEGMENTATION USING SINGLE PIXEL  

          Figures 3.2-3.4 show the results of segmentation by two, three and four classes. In 

these figures, part (a) shows the image that has been segmented by the given number of 

classes, part (b) shows the segmented image and part (c) shows the probability density 

function (pdf) of the constituent classes. The sum of these pdf’s models the histogram of 

the samples. The color on the segmented image and the line color of the pdf’s are 

matched for convenience of interpretation. The histogram of the samples has been 

obtained by sampling the image (row-wise and column-wise) with a sampling rate of 

five. The sample pdf has been plotted using the red dash-dot line in part (c) of the Figures 

3.2-3.4. A good match between the sum of class pdf’s and the sample pdf shows the 

accuracy of segmentation and modeling with the given number of classes. 

 

          The legend of the figure shows the fractional membership of each mixture 

component. For example, in Figure 3.2 (c) the proportion of Class-1 is 0.32 whereas the 

proportion of Class-2 is 0.68. The two regions can be clearly seen in the image. One is 

the background and the other is region formed by the track marks of a vehicle. As can be 

seen from the pdfs of the classes, the region formed by the tracks, forms the minor class 

that has the proportion of 0.32. In the case of three classes, the image can be divided into 

three regions. The first region consists of the background, the second consists of the 

vegetation and the third region is the slightly bright region surrounding the vegetation. 

The pdfs clearly show that the proportion of the classes consisting of the second and third 

region is less than that of the major class that consists of the background. 

 

          In the case of four classes, the background is divided into two regions based on the 

type of soil, i.e. dark and light. There are some bright regions in the image that most 

likely represent trees. These bright regions are further divided into the other two classes, 

which have smaller memberships.  

 

          The results (Figures 3.2-3.4) show that the EM algorithm was able to segment the 

image well for all the three cases. It can also be seen from these figures that the sum of 

the constituent pdfs very well modeled the sample pdfs.           
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                    (a) Actual Image                                          (b) Segmented Image 
 

 

 

 

             
                                               (c) Modeling by Two Classes 

                       Figure 3.2. Example of Image Segmentation Using Two Classes. 
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                     (a) Actual Image                                               (b) Segmented Image 
 

 

 

 

            
                                                (c) Modeling by Three Classes 

                     Figure 3.3. Example of Image Segmentation Using Three Classes. 
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                      (a) Actual Image                                          (b) Segmented Image 
 

 

 

 

          
                                                 (c) Modeling by Four Classes 

                     Figure 3.4. Example of Image Segmentation Using Four Classes. 
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3.6. RESULTS—SEGMENTATION USING SPATIAL DISTRIBUTION  

          Figure 3.5 shows the results for the segmentation based on spatial distribution from 

two representative frames of the May 2003 data. Figure 3.5 (a) and (c) show the image 

frames whereas Figure 3.5 (b) and (d) show the corresponding segmented images. 

 

     

                               (a)                                                                     (b) 

           

 

    
                               (c)                                                                      (d)                      

                          Figure 3.5. Image Segmentation Using Spatial Distribution. 
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          In this case the segmentation captures both gray value features (like vegetation soil 

etc) as well as the transition from one type of region to another. Because of this reason 

the edges formed due to the transitions in the background areas (for example due to the 

color of the soil) are captured and shown as small patches in the segmented image. 

 

3.7. CONCLUSIONS 

          In this section, single pixel level segmentation of the MWIR images is discussed. 

Multi (five) band data is generated from spatial neighborhood and segmentation based on 

spatial distribution is performed. The results of these two types of segmentation are 

shown and discussed.  
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4. ANOMALY DETECTION USING EM 

 

4.1. INTRODUCTION 

          In this section, various methods of anomaly detection are presented. First of all, a 

brief literature of anomalies or outliers (as they are called) is presented. This is followed 

by the study of some of the recent EM-based techniques that have evolved to detect 

anomalies. All of these require a mixture model. This section uses the results of EM-

based segmentation that have been obtained in the previous section. In other words, the 

anomaly detection stage comes after the pixel-level class assignments have been made. 

Therefore once the background data has been modeled with a Gaussian or some other 

mixture model, the concept of pixel membership is employed to define different EM-

based detection statistics.  

 

4.2. ANOMALIES AND OUTLIERS 

          The values that are away from the mainstream data are called as anomalies. Thus 

anomalies or outliers can be broadly described as observations (or subset of observation) 

that “appear to be inconsistent” with the remainder of that set of data [12]. The crucial 

point is that the phrase “appear to be inconsistent” is subjective because it is a matter of 

subjective judgment on the part of the observer to declare a particular observation as 

inconsistent. In the case of anomaly detection using EM-based algorithms, the outliers are 

said to be inconsistent because they are different from the background in a statistical 

sense.  

 

          The outlier problem is two-fold. First, it is necessary to determine whether the 

observation is really an outlier. Once this is decided, the next step is to find an efficient 

way to deal with these outliers. Rejection of outliers may not be an efficient way in 

certain situations. Thus the methods for processing the outliers take an entirely relative 

form and differ from situation to situation. For the current discussion, these outliers are of 

interest as possible indications of presence of mine-like targets.  
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          Anomaly detection is extensively used within the field of target detection and 

computer security [13]. In the case of target detection, the process of anomaly detection is 

comprised of finding the data samples that are different from the other samples in its 

neighborhood in some way. In the case of intrusion detection (in computer security), the 

call traces are observed for sequences that are different from the others, and these are 

then categorized as anomalous or intrusions [13]. Anomaly detection for hyper spectral 

imagery (HSI) is a useful technique for detecting objects of military interest [14]. Once 

the anomalies are detected, they can be passed to a classifier in order to determine the 

exact nature of the unusual object.  

 

          The remaining part of this section presents different EM-based anomaly detectors 

that use the concept of pixel membership. In all these detectors, it is assumed that the 

anomalies, being different from the background, would form a class that is well separated 

from the background. All these EM-based detectors are compared with the RX anomaly 

detector. Therefore the next section gives a brief review of the RX anomaly detector. 

 

4.3. THE RX ANOMALY DETECTOR 

          The RX algorithm as suggested by Reed and Yu [25] can be used for multi-band 

images with a zero mean, uncorrelated Gaussian background. For a ‘J’ band image ‘I,’ 

the RX statistics, , at any location is given as: Xr
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where ‘ M ’ is the locally estimated covariance matrix of dimension ‘J x J’ given by: 
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‘ Sμ ’ is the mean target signature and is given by: 
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          Here, ‘ ’ is the number of clutter pixels and ‘ ’ is the number of target pixels 

which are given as: 

CN TN
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          This thesis considers only single band data, and therefore J = 1. The RX statistic in 

this case is given as:  

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

∑

∑

∈

∈

M
N

I
N

I
N

Nr s
T

Wi
i

C

Wj
j

T
TX

C

T
2

2

2

1

1
μ

.                                                    (4.6) 

 

4.4. SEM-BASED ANOMALY DETECTORS IMPLEMENTED 

          This section will discuss three SEM-based anomaly detectors. All these detectors 

are based on the Gaussian mixture model of the image. The mixture model is estimated 

using the SEM algorithm. Once the SEM divides all the image pixels into classes and 

estimates the class parameters, one is ready to enter the SEM-based anomaly detection 

stage. The detectors that have been implemented are discussed in the following sub-

sections. 
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          4.4.1. Detector Using Pixel Membership. Sometimes the target pixels are not 

clearly resolved from the background, but they do appear somewhat atypical relative to 

the densities that define the mixture model. This fact is exploited by the SEM detector for 

detecting poorly resolved targets.  

 

          In this method, the likelihood of pixels is evaluated for the presence of anomalies. 

If the target pixels are separated out from the background, then their membership with 

respect to the background is low. Thus the pixels for which the likelihood is sufficiently 

low can be declared as targets. To test for the presence of anomalies, the metric used over 

a target window, ''  is given as [17]: W
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where, , is the pixel value of the jth sample, ‘ln’ is the natural logarithm,  is the 

number of classes, ‘

jy '' g

iπ ’ is the probability of ith class and ( )ji yp  is the class membership 

for pixel ‘ .’ The size of the window ''  should be matched to the typical size of the 

expected anomaly. 

jy W

 

          The test statistic ‘T,’ gives a high value at the locations of the anomalous pixels. 

 

          4.4.2. Detector Using Locally Optimum Bayes Detection (LOBD). In this 

detector, a locally optimum detection algorithm is applied for detection of random signals 

that occur in the mixture noise. The LOBD statistic for a discrete zero-mean signal in 

mixture noise is derived under the assumption that the signal and noise are independent. 

The detection statistic is used to distinguish between the following null and non-null 

hypotheses: 
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where are the pixels in some neighborhood window , ‘s’ is the unit variance 

signal template, ‘a’ is the unknown variance of the received signal and ‘ ’ is the jth 

noise sample. 

Wj∈ ''W

jN

           

          If the mixture noise is Gaussian, then a locally optimum test statistic has been 

derived in [16]. This is given as: 
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          Here, ( )0,| Hykp j  is the probability of class ‘k’ for null hypothesis, given the 

input samples. The detection statistic, ( )jyT , gives a high value for the anomalies. 

  

          It can be noted that the statistics discussed in section 4.4.1 and 4.4.2 are based on 

the segmentation of the data representing the whole image. As a result they are not 

locally adaptive. In the next section, a locally adaptive anomaly detector, based on multi-

class RX is discussed. This algorithm has been adapted from the one proposed by Dr. 

Fries for the airborne program [15].  

 

          4.4.3. Detector Using Multi-Class RX. It is known that SEM segments an image 

into homogeneous regions based on the intensity at each pixel. The intensity at each pixel 

is then tested against the regions that surround it to measure the degree to which it stands 

out. This can be operated on a window that moves down through the image. This can be 
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done by means of a likelihood ratio test [15] where the numerator is likelihood of the 

observed spectrum assuming the target is present and denominator is likelihood of the 

observed spectrum assuming the target is not present. 

 

Let the probability of the jth pixel belonging to the ith class be given by: 

 

                                                  .                                         (4.11) 

 

 

Likelihood of the ith class in a neighborhood under the window, ‘Wc’ is given by: 

 

    .                              (4.12) 

 

Then, the likelihood of ‘ ’ under null and non-null hypothesis is given by: jy
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The likelihood ratio, ‘ ’ is given as: Λ
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          The detection statistic, ‘Λ ,’ gives a high value for the anomalous pixels. If the 

anomaly target region is known to be of some size ‘W’ then the test statistic for the log-

likelihood can be written as: 
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4.5. THE AIRBORNE IMAGERY AND THE MINE DISTRIBUTION 

          This section presents an overview of the data processed. The image data in airborne 

minefield detection is collected by a low flying aircraft over different terrain during four 

different times of the day. Each flight of data collection is called a run which consists of a 

certain number of images (called frames) captured at approximately 8 frames per second. 

Each image is of 512 x 640 pixels in dimension. The data is collected for different mid 

wave infra red (MWIR) bands and over four different times of the day, typically—early 

morning, afternoon, evening and night.  

 

          The October 2002 data consists of 15 runs. The 15 runs contain data from three 

missions over different times of the day and bands. There are a total of 2143 frames 

(143x14 + 141x1). This particular collection of data consists of daytime data only. The 

primary terrain for the data collection can be classified as rocky arid areas with some 

vegetation.  Also, the data present contains only surface mines in it. The ground truth is 

available for 371 mine targets, consisting of 190 large surface mine targets and 181 small 

surface mine targets. Ground Truth is also available for 430 fiducials. These are rejected 

from the false alarms at the time of analysis. Only daytime data was available under this 

data set. 

 

          The dataset for May 2003 is the biggest collection of data available for analysis. 

The primary terrain with mines can be classified as arid with little or no vegetation. In 

this data collection, data showing background alone has also been collected in addition to 

data showing both background and minefields. The collection consists of 37765 image 

frames from 83 runs over mine areas from ten missions covering different times of the 

day and bands. It also contains 55 runs over background only areas from nine missions 

covering different times of day for full band (Band 0 and Band 1). The ground truth is 

available for 12391 mine targets of which there is 1748 large surface mine targets, 844 

small surface mine targets, 3946 medium surface mine targets and 5853 buried mine 

targets [23], [35].  
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          These two data collections together encompass a number of mine and minefield 

modalities such as terrain type, band, mine signatures and minefield performances. Some 

of the characteristics of the airborne imagery data [23] that spans across all the data 

collections are listed as follows: 

 

• Mine Types: Different types of mines can be classified based on size (large, 

medium, small), composition (metal, plastic) or method of placement (surface, 

buried): 

o Large surface mines : LP_B (plastic) and LM_A (metal) 

o Medium surface mines : MP_A (plastic) 

o Small surface mines : SM_A (metal) 

o Large buried mines : LM_A_B (large metal), LM_C_B (large metal) and 

LP_D_B (large plastic). 

o Medium buried mines : MP_A_B (medium plastic) 

 

• Spectral Bands: The four spectral bands in the MWIR spectrum range for which 

the data is collected are identified as: 

o Full band (3-5 μm)—Band 0, Band 1 

o Solar band (3-4 μm) —Band 2 

o Thermal band 1 (4-4.5 μm) —Band 3 

o Thermal band 2 (4.5-5 μm) —Band 4 

           

          The various detection statistics discussed in section 4.4 were performed on the two 

daytime datasets from May 2003 data. The mine distribution for surface and buried mines 

for these datasets is shown in Table 4.1.  
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                    Table 4.1. Mine Distribution for Surface and Buried Mines. 

 

 

 

 

 

 

Mine Name Y1F01P2LFN Y1F01P2LDN Total 

LM_A 12 12 24 

MP_A 47 50 97 

LP_B 12 9 21 

SM_A 12 12 24 

(a) Surface Mines 

 

 

Mine Name Y1F01P2LFN Y1F01P2LDN Total 

LM_A_B 12 12 24 

MP_A_B 12 13 25 

LM_C_B 40 41 81 

LP_D_B 11 8 19 

                                                   (b) Buried Mines                           

 

     

          Figure 4.1 shows the mine frames from this data (daytime). The various mines and 

clutter are marked using ‘× ’ marks. The red color is used to represent the mines whereas 

the cyan color is used to represent the clutter or fiducial markers. Figure 4.1 (a) shows the 

frame with only surface mine signatures. Figure 4.1 (b) shows the frame with only buried 

 



 40

mine signatures. Figures 4.1 (c) and (d) show the frames with both surface and buried 

mine signatures.  

 

 

   
                               (a)                                                                  (b) 

                             
                               (c)                                                                  (d) 

 Figure 4.1. Mine Frames Showing Surface and Buried Mines from the May 2003 Data. 

 

           

          Figure 4.2 shows some of the typical mine signatures of various surface mines. 

Typical surface mine signature shows a bright reflection and a prominent shadow feature. 

In case of MP_A and SM_A mines the reflection is not prominent. It is the signature due 

to shadow that is captured by different anomaly detectors. 
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                           (a) LM_A                                              (b) MP_A 

               
                           (a) LP_B                                              (b) SM_A 

                     Figure 4.2. Individual Mine Signatures of Surface Mines. 

 

           

          Figure 4.3 shows some of the typical mine signatures of different buried mines. It 

can be seen that the buried mines have a weak signature. The mine signature of the buried 

mines is bigger than the physical size of the mine. This is because the signature mainly 

represents the disturbed soil. Therefore for the detection of these mines a larger target 

window is required for better detection performance.  
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                           (a) LM_A_B                                       (b) MP_A_B 

               
                         (c) LM_C_B                                          (d) LP_D_B 

                      Figure 4.3. Individual Mine Signatures of Buried Mines. 

 

           

4.6. RESULTS 

          Figure 4.4 shows the MWIR image from one of the datasets of May 2003 data. It 

also shows the segmented image and the output of the various detectors discussed in 

Section 4.3 and 4.4. 
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            (a) Raw Image Data                                           (b) Segmented Image 

         
(c) Detector Output for Pixel Membership            (d) Detector Output for LOBD 

        
 (e) Detector Output for Multi-Class RX           (f) Detector Output for RX Detector                                  

   Figure 4.4. Raw Image Data, Segmented Image and Outputs of Various Detectors. 
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          Figure 4.4 (a) shows one of the mine frames from the May 2003 data. The frame 

shows three surface mine types (LM_A, LP_B and SM_A), and one buried mine type, 

LM_A_B. It can be seen that the surface mine signatures consists mainly of the shadows. 

It can also be seen that in case of LM_A and LP_B the signatures partly consist of 

reflections as well. On the whole the signatures of the surface mines have a high contrast. 

On the other hand, the signatures of the buried mines are weak.  

 

          Figure 4.4 (b) shows the segmented image using four classes. The class containing 

surface mines is basically of shadow and is a minority class. Also this class is reasonably 

separated from the background class. The signatures of the buried mines are weak. These 

signatures basically consist of the disturbed soil and therefore they belong to a class that 

is not very well separated from the background classes.  

 

          Figure 4.4 (c)-(e) shows the outputs of different SEM-based detectors, whereas 

Figure 4.4 (f) shows the output of the RX anomaly detector. The outputs of the EM 

detectors using pixel membership and multi-class RX (parts (c) and (e) respectively) are 

on a log scale and therefore show a large variation in intensity of different regions. It can 

be noted that the statistics based on pixel membership and Bayes detection (parts (c) and 

(d) respectively) are based on the segmentation of the data representing the whole image, 

whereas the statistic based on multi-class RX (part (e)) is operated over a window. Hence 

the detector based on multi-class RX tends to detect local anomalies. This can be seen by 

observing the output of this detector (part (e)) of Figure 4.4. 

 

          Figure 4.4 (f) shows the output of the RX anomaly detector. The RX detection 

statistic is basically the signal-to-clutter ratio as discussed in section 4.3. This statistic has 

a high value if the anomalies have a high contrast signature (high signal strength) and are 

surrounded by a homogeneous region (low clutter variance and low clutter strength) in its 

neighborhood. As can be seen from part (a) of the figure that the surface mines have a 

high contrast signature and they are mostly surrounded by a relatively homogeneous 

neighborhood. As a result, surface mines are well detected by the RX detector.   
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          In order to compare the performance of the detectors, ROCs have been generated 

using the different SEM-based detectors discussed in Section 4.4. These detectors are 

compared with the RX anomaly detector. All the ROCs show the probability of detection, 

Pd, achieved until the False Alarm Rate (FAR) of 0.1/m2. There are eight sub-plots, each 

corresponding to one of the eight types of mines listed in Section 4.5. The title of these 

figures shows the mine type and the number of such mines in the data. For example, 

LM_A (24) in Figure 4.5 (a) tells that there are 24 LM_A mines in the data. The ROCs 

are calculated over the frames with mines only. Figures 4.5 shows ROCs calculated for 

surface mines. Figure 4.6 shows the ROCs calculated for the buried mines. 

 

   
                              (a) LM_A                                                        (b) MP_A 

   
                             (c) LP_B                                                         (d) SM_A 

                                Figure 4.5. ROC Curves for Different Surface Mines.            
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                         (a) LM_A_B                                                  (b) MP_A_B 

   
                          (c) LM_C_B                                                   (d) LP_D_B 

                                Figure 4.6. ROC Curves for Different Buried Mines.  

 

 

          The observations of this section follow from the discussion in section 4.6. As can 

be seen from the mine frames, the surface mines produce a high contrast signature. The 

target mask used in RX [23], [35] covers the signature very well and produces a high 

value of the signal strength. The background is generally homogeneous and therefore the 

clutter variance is low. Thus, the RX anomaly detector performs very well for the surface 

mines. Because of the high contrast signature, the surface mine pixels are well separated 

from the background classes. Therefore SEM-based detectors perform well for these 

mines as well. On the other hand, the detector based on multi-class RX detects lots of 
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false alarms because the detector operates over a window and therefore detects local 

anomalies. Overall performance of the RX detector for surface mines is better than (or 

comparable to) that of the EM-based detectors because of a relatively homogeneous 

background. 

 

          The buried mines have a very weak signature that is not well separated from the 

background. Due to this weak signature, the signal strength is very low and for this 

reason the performance of the detectors is poor for the buried mines. In case of the SEM-

based detectors, the class containing buried mines is not well separated from the 

background class and there are many regions in the background that are in the same class 

as the mine area. For example, on observing parts (a) and (b) of Figure 4.4 it can be seen 

that the regions of dark soil belong to the same class that contains buried mines. Thus, the 

performance of the SEM-based detectors also goes down.  

 

          It is clear from the mine signatures of the buried mines that a bigger target radius is 

required to capture the mine signatures of these mines. In case of RX, a large clutter 

radius introduces non-homogeneities of the background which increases the clutter 

variance and thus reduces the detection statistics. However, the SEM-based detectors do 

not suffer from the disadvantages of the higher mask size because target pixels are 

evaluated against a set of background class. The mask size can be increased to 

accommodate the complete mine signature and correspondingly larger background area 

can be used to evaluate the detection statistics.  

 

          Thus, in the case of buried mines, the performance of the SEM detectors is likely to 

be better than the RX anomaly detector in couple of cases. In the above results for the 

case of LM_A_B mines (Figure 4.6 (a)) SEM_MCRX is better performing than RX. In 

case of MP_A_B mines (Figure 4.6 (b)) SEM_PM performs better than RX. Overall, the 

results are comparable. 
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4.7. CONCLUSIONS         

          In this section, the problem of anomaly detection using image segmentation has 

been presented. The various SEM-based anomaly detectors that use the concept of the 

anomaly class to separate the anomalies from the background have also been presented. 

The SEM-based anomaly detectors are compared with the RX anomaly detector. The 

performance of the surface and buried mines has also been analyzed for these detectors. 
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5. MODELING OF DETECTION STATISTICS USING EM 

 

5.1. OVERVIEW 

          In the previous section, segmentation of the background data into distinct classes 

was discussed. This section shows that the EM algorithm can also be used to model the 

output of detection statistics such as RX. The modeling of the detection statistic is very 

important since it represents the spatial correlations and the local non-homogeneities in 

the data. Also in order to compare and quantify the performance of an anomaly detector 

such as RX over different terrain, it is necessary to model the detection statistic into 

probabilistic models. This modeling also helps in the adaptive Constant False Alarm Rate 

(CFAR) threshold selection to locate potential targets as discussed in Section 6. 

  

          Various parametric distributions such as Beta and Gamma distributions are used 

for modeling the detection statistic. These distributions have been used in modeling due 

to their modeling flexibility. Once the background data has been modeled with various 

mixture models, the model that fits the data most accurately can be determined. This is 

done by using various test statistics. In the end, the performance of various mixture 

models is compared based on the test statistics.  

 

5.2. THE RX STATISTIC 

          The RX test statistic for a single-band image data has been discussed in Section 

4.4. The RX statistic follows an F-distribution for clutter and is given by: 
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          The above equation is of the form, ⎟⎟
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          It has been shown in [46] and [47] that the output of the RX anomaly detector can 

be modeled by a Gamma mixture model. This thesis uses the two parameter Gamma 

mixture model to model the detection statistic, ''r . The Gamma model used is given by: 
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where,  is the complete Gamma function. ( )kΓ

           

          The Gamma model has received widespread importance in the modeling because it 

represents the distribution of sum of squares of independent normal variables. It is used 

extensively in the modeling of the SAR data [27]. One of the most important models of 

the SAR data is the multiplicative model. Here the SAR data, ‘Z,’ is modeled as the 

product of two independent random variables, ‘X’ and ‘Y.’ Therefore: 

 

Z = X.Y                         (5.3) 

 

          The random field ‘X’ models the backscatter that depends on the area each pixel 

belongs to, while ‘Y’ takes into account the fact that the SAR images are the result of a 

coherent imaging system [26]. The Gamma distributions have been proposed for ‘X’ and 

‘Y’ because of their excellent modeling capability of heterogeneous areas such as forests. 

The modeling of SAR images using the multiplicative model of Gamma distributions is 

also done in [28]. Gamma mixture models have been used for target recognition by Webb 

[32], who uses the EM algorithm to estimate the parameters of a Gamma mixture model. 

The Gamma mixture model approach has also been used for target recognition in [33]. 
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Now consider the following transformation on ‘r’:  
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          With this transformation, the probability density function for the test function value 

(‘ x ’) under null hypothesis is a Beta density function given by [45]: 
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          Here  denotes the number of samples and '  denotes the dimension of the 

image, which is one for a single-band case. In standard form the expression in Equation 

(5.3) can be written as: 
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          Another widely used Beta model in literature, [11], is the so called three parameter 

Beta given by: 

 

),,:( ληγxB  = ( )
( )[ ]

0,, ; 10   ,    
)1(1,

1 11

>≤≤
−−
−

+

−−

ληγ
ληγ

λ
ηγ

ηγγ

x
xB

xx ,       (5.8) 

 

where, ( )ηγ ,B  is the complete Beta function. 
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          Equation (5.6) reduces to the two parameter Beta distribution for λ  = 1. The 

parameter, ‘λ ,’ allows the three parameter Beta distribution to have a wider variety of 

shapes than the standard two parameter Beta. This is an important property in modeling 

because the three parameter Beta has an additional flexibility. For example, if in the two 

parameter Beta, ηγ = , then the distribution is symmetric with a mean value at 0.5. 

However, the three parameter Beta can be skewed depending on ‘λ ’ because the 

kurtosis, mode and skewness depend on ‘λ .’ 

                     

5.3. THE NON-MAX SUPPRESSION 

          The output of the RX algorithm is basically the “signal-to-clutter” image. This list 

of detections consists of the coordinates of the potential targets along with the RX test 

statistic value. This is then subjected to the non-max suppression in order to get a list of 

targets that have been highlighted by the anomaly detector. Non-maximal suppression is 

a processing algorithm that suppresses (makes zero) all the targets in a pre-defined R-

pixel radius neighborhood except the local maximum.  

 

          Let f (x|H0) be the probability density function for the RX clutter statistic x under 

null hypothesis after non-max suppression.  Let the function g(l) represent the mapping 

function performed by the non-max operation and '  be the R-pixel neighborhood. 

Thus, 
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          The probability density function used to model the background clutter statistics 

after non-max suppression is given as: 
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where  is the probability due to RX statistics under null hypothesis, )|( 0Hxf AN θ=  is 

the expected number of independent targets present in the neighborhood ' , ' RW '' A  is the 

area of the neighborhood  and '' RW ''θ  is the density of the potential targets. Also,   

 

∫=<==
x

xdHxfHxxfxofCDFxF
0

00 )|()|(  )( ,                  (5.11) 

 

where CDF is the Cumulative Distribution Function. 

 

Thus for example in the case of three parameter Beta distribution,  
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Then, the modified three parameter Beta, after the non-max suppression has the 

distribution given by: 
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where,  is the CDF of . )(3 xF )|( 03 Hxf

 

          In this thesis, ),:( ηγxB , ),,:( ληγxB and ),,,:( NxB ληγ  are the Beta distributions 

used to model the detection statistic. The Gamma model used for modeling is ),:( krG λ . 
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5.4. TEST STATISTICS TO MEASURE GOODNESS OF FIT 

          5.4.1 Various Test Statistics. A list of various test statistics that measure goodness 

of fit is presented along with their description in Appendix—B. These tests include the 

following:  

 

          (i) Chi-Square Test 

          (ii) Cramer Von-Mises (CVM) Test 

          (iii) Kolmogorov-Smirnov (KS) or Kuiper Test 

 

          The main limitation of the CVM, KS or Kuiper tests is that in literature the critical 

values for the test statistics are given only for some given distributions, such as 

Exponential, Weibull and Normal. Thus these test statistics cannot be used for 

applications where different distributions are used. If the distribution is completely 

specified, then these test perform well and have a high power. But if the parameters are 

estimated from the data, then the power of these tests reduces. This is because new 

critical values need to be formulated and these must be obtained for the specific 

parametric form that is to be tested.  

 

          On the other hand, this does not pose a problem for the Chi-Square test because the 

number of degrees of freedom is adjusted in accordance with the parameters that are 

estimated from the data. It is because of the flexibility of the Chi-Square test that it was 

used for testing the modeling results. The specifics of this test are discussed in the 

following section. 

 

          5.4.2. The Chi-Square Test. The Chi-Square test is described in detail in 

Appendix—B. This section briefly presents the test and the way it is applied in this study. 

For the Chi-Square test, the samples are grouped in bins in such a way that there are at 

least a certain fixed number of samples per bin. Also, when the test statistic is evaluated 

for the frame ‘k’, the samples (RX values) from the three frames, ‘k-1,’ ‘k’ and ‘k+1’ are 

considered. 
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          To evaluate the modeling performance of the background, it is necessary to make 

sure that the samples are not anomalies. There are about 400 samples per frame, and 

about 10 samples per frame are considered anomalous (i.e. these don’t represent the 

background). Therefore, a threshold is set so as to remove the top 30 samples (assuming 

that they are anomalous), and so the top 30 samples are not considered while evaluating 

the test performance. Depending on the number of parameters that are to be estimated, 

the degrees of freedom is calculated. The test statistic is then calculated for a particular 

frame. After calculating the test statistic and the degrees of freedom for a particular 

frame, the threshold is found for the given confidence level. The confidence level 

generally taken is in the range of 0.90 to 0.95. For the current results, a confidence level 

of 0.95 is used. 

 

          5.4.3. Performance Evaluation. After calculating the threshold, one of the 

following two cases arise: 

 

Case – 1 (Test Statistic < Threshold): In this case one says that the frame passes the test. 

For a test at a confidence level of 0.95 it can be said with 95% confidence level that the 

background represented by the frame can be modeled by the given distribution. 

 

Case – 2 (Test Statistic >= Threshold): In this case one says that the frame fails the test. 

For a test at a confidence level of 0.95 it can be said with 95% confidence level that the 

background represented by the frame cannot be modeled by the given distribution. 

 

          Once the decision has been made for the frame, the test is performed on all the 

frames of the given dataset and the percentage of frames that have passed the test is 

found. Thus on an average it is expected that 95% of the frames will pass the test and 5% 

would fail. If the fail percentage is much higher than 5% one can say that the modeling is 

bad otherwise the modeling is good. It is clear from the above procedure that the pass 

percentage is a good performance measure to judge the modeling ability of the given 

distribution to model the background represented by the frames. 
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5.5 THE KULLBACK-LEIBLER (KL) DIVERGENCE 

          The KL divergence [30] is a way to measure the closeness between the two pdfs. It 

can also be seen as a measure of relative entropy between two pdfs [31]. Generally the 

KL divergence is used to measure the closeness between the actual distribution and the 

modeled distribution. The closer the pdfs are to each other, the smaller is the divergence. 

The KL divergence between two pdf’s  and is given as: )(xp )(xq
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          Clearly if the pdfs are equal, then the logarithmic terms become zero and the 

divergence between them is zero. Also, the divergence between the two pdfs is always 

non-negative. In all the modeling results that are shown, the divergence between the 

modeling distribution and the sample histogram is given in the legend of the figure. In the 

legend, the divergence value is given in brackets, next to the modeling distribution. 

 

5.6. REMOVAL OF BAD DATA  

          Certain frames in the data don’t represent the background. Therefore, these frames 

are not considered for the test. Some of these frames are shown in Figure 5.1.  

 

 

                                 
                    (a) Frame Nos. 274-276                   (b) Frame Nos. 285-287 

           Figure 5.1. Frames Showing Data Not Representing the Background. 
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5.7. PARAMETER ESTIMATION USING LEAST SQUARES  

          The results of EM estimation are compared to another method of estimating the 

parameters of a given distribution. This method is the method of Least Squares (LS) as 

discussed in [23], where it is used for estimating the parameters of the modified three 

parameter Beta distribution. In this method, to estimate the values of the parameters of 

the modified three parameter Beta distribution, an arbitrary sample space for the set of 

parameters ( N,,, )ληγ  is assumed. This sample space forms the initial search space and a 

brute force search is done across the sample space, to identify a set of values for ληγ ,,  

and N that is at a minimum distance from the measured pdf. In order to do this, for every 

set of parameters, the error between modeled pdf and the observed pdf is calculated by 

taking the Euclidean distance between the two pdfs. Amongst the error values obtained, 

the minimum error is determined and the set of parameters ( )N,,, ληγ  corresponding to 

this minimum error is taken as the first estimate of the parameters. After this coarse 

estimate of the parameters is obtained, a finer resolution sample space around the coarse 

estimates is assumed. The method of least squares is reiterated. This second iteration 

results in a finer resolution on the estimated parameters. 

 

          In the next section, the modeling results of the parameter estimation techniques 

using the EM algorithm and the method of the Least Squares are discussed. 

 

5.8. MODELING RESULTS  

          This section includes a visual inspection to get an idea of the fit of the distributions 

with the data. A more rigorous quantitative analysis has been done after that when the 

results for the Chi-Square test have been reported on the given data. As mentioned 

before, for evaluating the performance for frame ‘k’, the samples from the three frames, 

‘k-1,’ ‘k’ and ‘k+1’, are considered. Therefore, while displaying the modeling results, the 

images have been registered to show all three consecutive frames.  

 

          Figure 5.2 shows a sample modeling result for the Beta and Gamma distribution. It 

shows the pdf of the two constituent classes along with the pdf of their sum. It is to be 
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noted that the Gamma distribution is plotted on the ‘ r ’ domain whereas the Beta 

distribution is plotted on the ‘ x ’ domain. In part (a) of the figure, it can be seen that there 

are two prominent regions in this image. One region is the background where as the other 

region is some vegetation like trees. The background containing the two regions has been 

modeled by the two classes as shown in parts (b) and (c). 

 

 

                                       
                               (a) Registered Image—May 2003 Data (Nighttime) 

 

  

Background plus Vegetation Background plus Vegetation 

Background Background 

Vegetation Vegetation 

                  (b) Gamma 2-Parameters                                 (c) Beta 2-Parameters 

              Figure 5.2. Background Modeling Showing the Mixture of Two Classes. 
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          Figures 5.3 (a) and 5.4 (a) show the registered image of the frames under 

consideration for May 2003 nighttime data. The dataset name for the result is mentioned 

at the top of every figure. In all the figures showing the modeling results of both Beta and 

Gamma distributions, the histogram are drawn in common ‘ x ’ domain ( ) for 

easy comparison. Part (b) of Figures 5.3 and 5.4 shows the fit of modified three 

parameter Beta distribution (Estimated using Least Squares) and the two parameter 

Gamma distribution (Estimated using EM), with the histogram of the samples. Part (c) of 

Figures 5.3 and 5.4 shows the fit of the two parameter Beta, three parameter Beta and the 

modified three parameter Beta distributions (all estimated using EM), with the histogram 

of the samples.  

]1,0[∈x

 

          The pass percentage of various models for RX samples for the dataset, 

Y1G01P3LIN, is reported in Table 5.1. It can be clearly seen that the performance of the 

two parameter Gamma and Beta mixture models is the best at 96.06% and 95.14% 

respectively. This is followed by the performance of the modified three parameter Beta 

model obtained using least-squares that has a pass percentage of 94.68%. It can be noted 

that these percentages are quite close to 95% as was expected at a confidence level of 

95%. 

 

          As mentioned in Section 2.7, as the number of parameters to be estimated 

increases, the log-likelihood surface is no longer steep. The surface becomes flat, and all 

the parameters do not converge to a steady value. In fact, the parameters tend to converge 

to a range of values. Because the log-likelihood surface is flat, the convergence is not 

very stable, and the performance deteriorates as the number of parameters increase. This 

is the main reason for the poor performance of the modified three parameter Beta model 

obtained using EM. 
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(a) Background Only Registered Image—May 2003 Data (Nighttime) 

 

   
  (b) Least-Squares and Gamma 2-Parameters     (c) Beta 2, 3 and Modified 3-Parameters 

             Figure 5.3. Background Modeling for Different Distributions—Nighttime. 
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                    (a) Registered Image With Mines—May 2003 Data (Nighttime) 

 

 
  (b) Least-Squares and Gamma 2-Parameters   (c) Beta 2, 3 and Modified 3-Parameters 

   Figure 5.4. Background Modeling With Mines for Different Distributions—Nighttime. 
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Table 5.1. Pass Percentages of Various Mixture Models. 

 

                             Modeling 

Distribution 

Pass Percentages (%) for 

95% confidence level for 

RX 

Gamma 2-Parameters 96.06 

Beta 2-Parameters 95.14 

Beta 3-Parameters 90.05 

Modified 3 Parameter Beta 68.75 

Modified 3 Parameter Beta 

(Least Squares)  
94.68 

 

 

 

 

 

 

 

 

 

         

 

 

          After considering the performances of different models, the further analysis was 

carried extensively on various datasets using the two parameter Beta and Gamma 

distributions only, because of their superior performance. The analysis was done for both 

RX and Radial Anomaly Detector (RAD) [35] samples. Figures 5.5-5.10 show the 

modeling results for these two distributions for the May 2003 data (daytime and 

nighttime) and October 2002 data (daytime). Part (a) of the Figures 5.5-5.10 shows the 

registered image of the frames. Part (b) of the Figures 5.5-5.10 shows the modeling 

results of the two parameter Gamma and Beta distributions for RX samples. Part (c) of 

the Figures 5.5-5.10 shows the results of the same distributions for RAD samples. 

 

          It can be seen that the histogram of the RAD samples is noisier than that of the RX 

samples. Part of the reason is that in case of RX, the samples are distributed in a range of 

0-0.2, whereas in case of RAD, the samples are distributed in a wider range of 0-0.6, 

which makes the observed histogram for RAD seem noisier.  
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                                    (a) Registered Image—May 2003 Data (Daytime) 

 

 
                            (b) RX                                                             (c) RAD 

                    Figure 5.5. Background Modeling for May 2003 Data for Daytime. 
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                                   (a) Registered Image—May 2003 Data (Daytime) 

  

 
                            (b) RX                                                             (c) RAD 

                    Figure 5.6. Background Modeling for May 2003 Data for Daytime. 
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                                 (a) Registered Image—May 2003 Data (Nighttime) 

  

 
                            (b) RX                                                             (c) RAD 

                   Figure 5.7. Background Modeling for May 2003 Data for Nighttime. 
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                                (a) Registered Image—May 2003 Data (Nighttime) 

 

 
                            (b) RX                                                             (c) RAD 

                  Figure 5.8. Background Modeling for May 2003 Data for Nighttime. 
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                                        (a) Registered Image—October 2002 Data 

  

 
                            (b) RX                                                             (c) RAD 

                          Figure 5.9. Background Modeling for October 2002 Data. 
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                                        (a) Registered Image—October 2002 Data 

  

 
                            (b) RX                                                             (c) RAD 

                         Figure 5.10. Background Modeling for October 2002 Data. 
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          Because the histogram of the RX samples is smoother in comparison to that of the 

RAD samples, the average divergence between the actual and modeled pdf in case of 

RAD samples is more (≈ 0.3) than the average divergence in case of the RX samples (≈ 

0.1). From the results it can be seen that the performance of the two models is quite 

comparable for RX and RAD detection statistics. The modeling performance of the two 

mixture models is nearly the same for the two types of data in the case of RX. However, 

in the case of RAD, the modeling performance of the Gamma mixture model goes 

slightly down for the October 2002 data. This can also be seen from Figure 5.9 (c), where 

the modeling by the two parameter Gamma model is not good for RAD samples. Tables 

5.2-5.7 show the pass percentage of these distributions for RX and RAD samples. 

 

                           Table 5.2. Pass Percentages for RX—May 2003 Daytime. 

Pass Percentages (%) for 95% confidence level, RX May 2003 

 (Day Time) Beta 2-Parameters Gamma 2-Parameters 

Y1F01P2LFN 95.36 93.82 

Y1F01P2LDN 90.53 94.71 

Y1F01P2LEN 92.53 93.41 

Y1H01P2LIN 90.64 93.15 

      

                        

                          Table 5.3. Pass Percentages for RX—May 2003 Nighttime. 

Pass Percentages (%) for 95% confidence level, RX May 2003 

 (Night Time) Beta 2-Parameters Gamma 2-Parameters 

Y1I01P3LKN 94.48 94.70 

Y1G01P3LIN 94.44 94.21 

 Y1G01P3LJN 92.66 94.66 

Y1G01P3LKN 94.97 91.10 
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                             Table 5.4. Pass Percentages for RX—October 2002. 

Pass Percentages (%) for 95% confidence level, RX 
Oct 2002 

Beta 2-Parameters Gamma 2-Parameters 

DT17BP2LEN 95.10 97.20 

DT17CP3LNN 99.30 100.00 

DT17CP3LON 95.80 98.60 

DT17AP1LAN 88.81 93.00 

                          

                              

                            Table 5.5. Pass Percentages for RAD—May 2003 Daytime. 

Pass Percentages (%) for 95% confidence level, RAD May 2003 

 (Day Time) Beta 2-Parameters Gamma 2-Parameters 

Y1F01P2LFN 99.34 98.89 

Y1F01P2LDN 98.89 95.60 

Y1F01P2LEN 98.68 97.80 

Y1H01P2LIN 99.54 98.40 

 

                             

                           Table 5.6. Pass Percentages for RAD—May 2003 Nighttime. 

                  

Pass Percentages (%) for 95% confidence level, RAD May 2003 

 (Night Time) Beta 2-Parameters Gamma 2-Parameters 

Y1I01P3LKN 98.23 98.23 

Y1G01P3LIN 96.53 97.90 

 Y1G01P3LJN 94.00 97.33 

Y1G01P3LKN 94.97 98.63 
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                               Table 5.7. Pass Percentages for RAD—October 2002. 

Pass Percentages (%) for 95% confidence level, RAD 
Oct 2002 

Beta 2-Parameters Gamma 2-Parameters 

DT17BP2LEN 99.30 94.40 

DT17CP3LNN 100.00 92.28 

DT17CP3LON 97.20 85.31 

DT17AP1LAN 100.00 89.44 

 

 

          It can be recalled from section 5.4.3 that for good modeling it is expected that on 

an average 95% of the frames should pass the test. From the results in Tables 5.2-5.7, it 

can be observed that the pass percentages of the two parameter Beta and Gamma model 

are close to 95%. Therefore the modeling by the above models can be considered to be 

good. Also by observing the overall performance across the samples and the data, it is 

evident that the performance of the Beta mixture model is comparable to that of the 

Gamma mixture model for the May 2003 data. However for the October 2002 data, the 

performance of the Beta model is better than that of the Gamma model for RAD samples. 

 

          On observing the October 2002 data, it can be seen that many frames have images 

of vegetation such as trees and bushes. In fact, a good portion of the dataset is covered by 

frames having images of trees. Thus, these frames don’t represent a homogeneous 

background. This, along with the fact that the RAD samples are quite noisy, brings down 

the performance of the Gamma model for this data. The fit of the Beta model is good in 

spite of the non-homogeneity of the data. This shows that the Beta model is robust in 

modeling these non-homogeneous areas.  

 

5.9. FRAME CHARACTERIZATION  

          This section shows how to characterize a frame based on the mixing proportions of 

the classes. This gives some information about the homogeneity of the data. The 

characterization based on the detection statistic is important since it represents the spatial 
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correlations and the local non-homogeneities in the data. Therefore the detection statistic 

represents the true nature of the background. After investigating the class coefficients of 

the frames, Table 5.8 is obtained. The data has been modeled by two classes by the 

Gamma mixture model with two parameters. 

                                                                                                

                                                 Table 5.8. Frame Distribution. 

                                                   

Distribution of the Coefficient of the Major Class Across Frames              

Modeled by Gamma 2-Parameters using Two Classes (for RX) 

Run Names 
 

Coefficient 

range (Major 

Class) 

DT17CP2LMN     

(Total 

Frames/Frames 

Failed) 

Y1F01P2LFN       

(Total 

Frames/Frames 

Failed) 

Y1G01P3LIN      

(Total 

Frames/Frames 

Failed) 

 0.98 to 1.00 68/6 139/18 5/1 

0.95 to 0.98 12/1 21/2 7/0 

0.90 to 0.95 9/0 16/1 35/2 

0.80 to 0.90 12/0 20/0 147/8 

0.70 to 0.80 21/0 48/1 148/8 

0.60 to 0.70 12/0 79/0 62/5 

0.50 to 0.60 9/0 130/6 28/1 

Total 143/7 453/28 432/25 

 

Based on the Table 5.8, three main categories are considered. They are as follows: 

 

Category-1 (1 > Major class coefficient > 0.98): This category corresponds to the frames 

that essentially comprise the background. The background represented by these frames 

can be called benign in comparison to the background represented by the frames from the 

other categories. In the case of the dataset, Y1G01P3LIN, most of the frames represent a 

background consisting of some type of vegetation, i.e. grass, bushes and trees. Due to 
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this, a majority of frames have a major coefficient in the range of 0.7 to 0.9. In the case of 

the datasets DT17CP2LMN and Y1F01P2LFN, the frames mainly represent the 

background alone. Therefore, most of the frames belong to this category.     

   

Category-2 (0.98 > Major class coefficient > 0.70): Generally, these are the frames that 

consist of some clusters of features that are essentially not the part of the background. For 

the dataset Y1G01P3LIN, the data show that most of the frames contain a background 

that has mixing coefficients that belong to this category. However in case of the other two 

datasets not many frames belong to this category.  

 

Category-3 (0.70 > Major class coefficient > 0.50): These are the frames that are highly 

non-homogeneous. In these frames, the background is mainly comprised of clusters of 

features that are not the part of the background.  

 

          Some representative frames from these three categories are shown in Figure 5.11. 

Parts (a), (c) and (e) of the figure show the registered frames. Parts (b), (d) and (f) show 

the modeling using two parameter Gamma mixture model. The modeling is done using 

two classes. The pdf of the constituent classes along with their sum is also shown. The 

major and minor classes have been shown in the figure. The sum of the pdfs of the 

classes is used to model the histogram of the samples. 

 

          It can be clearly seen that for the second and third category, the minor class is quite 

prominent. For the first category the minority class has a very insignificant contribution 

to the overall fit.  
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Major Class 

Minor Class 

  (a) Coefficient of Major Class = 0.99                                   (b) Modeling  

 

                   

Major Class 

Minor Class 

  (c) Coefficient of Major Class = 0.82                                   (d) Modeling  

 

                     

Major Class 
Minor Class 

   (e) Coefficient of Major Class = 0.58                                   (f) Modeling                                                 

 Figure 5.11. Background Modeling for Different Categories Using Gamma Distribution.       
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5.10. CONCLUSIONS  

          This section has shown the application of the EM algorithm in modeling of the RX 

and RAD statistics. The modeling performance of the various mixture models was also 

evaluated, using the Chi-Square test. It can be clearly seen that the two parameter Beta 

and Gamma mixture models have the best performance. A brief characterization of the 

background based on the coefficient of the majority class was also done. 
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6. THRESHOLD SELECTION 

6.1. OVERVIEW  

          In ATR systems [7], often there is a front-end detection stage or anomaly detection 

stage. This is also known as the prescreening stage. The aim of this stage is to select the 

targets at a given False Alarm Rate (FAR) and then pass these targets to the next stage. 

The threshold value is the minimum value of the detection statistic at which a particular 

false alarm rate is achieved. In order to detect a high percentage of targets, the 

prescreening stage often uses a low threshold that may result in a large number of false 

alarms. A large number of false alarms increase the burden on the later stages and 

therefore the prescreening stage should be designed in such a way so that it reduces the 

number of false alarms while maintaining a high probability of detection. 

 

          In many cases, the process of threshold selection simply involves selecting the 

highest ''T  targets based on their detection statistic. This method of pre-specifying the 

number of targets per frame, though simple in a functional sense, fails to provide any 

insight into the nature of the background or in providing the mechanism of comparing 

thresholds across different datasets and anomaly detector algorithms. This is basically 

because the detection statistics by themselves are affected by the spatial correlations and 

local non-homogeneity in the image. Also, threshold selection based on desired number 

of targets per frame does not statistically quantify the true anomalies. Therefore, the need 

for a more sophisticated threshold selection scheme is evident.  

 

          This section addresses the application of background modeling in the adaptive 

Constant False Alarm Rate (CFAR) threshold selection. Here the distribution of the RX 

statistics of the background is modeled using the two parameter Beta and Gamma model 

along with the modified two parameter Beta model discussed in the next section. The 

threshold that confirms to the desired FAR is then selected by inverse mapping of the 

Cumulative Distribution Function (CDF) of this model. The mapping onto a probabilistic 

model helps select a threshold that is invariant to the background that the detector is 
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operating in. This mapping onto a distribution also helps map the anomaly detection 

statistics across different algorithms onto a common distribution, thus facilitating 

comparison among their statistics for sensor fusion and algorithm level fusion. This 

threshold which depends on the specified CFAR value, determines the number of 

selected detections above the threshold. This number of detections for background frames 

gives a good evaluation of the modeling capability of the distribution used for 

background modeling.  

 

6.2. THE MODIFIED TWO PARAMETER BETA MODEL  

          From the discussion of Section 5.2 and 5.3, it is known that if  is the 

probability distribution of the RX statistics under null hypothesis, then after the non-max 

suppression, the probability distribution of the locally maximum detection statistics under 

null hypothesis becomes: 
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          For two parameter Beta model, the distribution under null hypothesis is given by: 

 

 ( ) ),(02 ηγBHxf = ,                                            (6.2) 
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Then the modified two parameter Beta distribution is given by: 
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where F2(x) is the cumulative distribution function of , the generalized two 

parameter Beta distribution. ‘K’ is a normalizing constant and is given by:  
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          Parametric estimation of this modified two parameter Beta model  involves 

obtaining estimates ‘ ,’ ‘ ’ and ‘ ’ of the three parameters ‘

)(3 xf

°γ °η °N γ ,’ ‘η ’ and ‘N’ for the 

input image. The parameters are estimated using the EM algorithm. As mentioned in the 

previous section, to ensure a good number of sample points for modeling, the targets 

from the current frame and  frame about it are used for modeling the current frame. A 

typical frame consists of about 380 targets, and thus about 1140 (380x3) targets are used 

to model every frame. This distribution is compared with the two parameter Beta and 

Gamma models for comparison. The update equations for the modified two parameter 

Beta distribution are given in appendix—A.1.4.  

1±

 

6.3. THRESHOLD CALCULATION FOR A GIVEN CFAR  

          In this section, the working procedure for calculating the threshold from the model 

is discussed. 

  

          Let ‘Nr’ and ‘Nc’ be the number of rows and columns in the image. The GSD is the 

Ground Sampling Distance for the airborne imagery in inches. If there are ‘Nt’ targets per 

image segment (frame), then the probability of false alarm, ‘Pf’ is given as: 

 

Pf = 
tN

ACFAR).(             (6.6) 

 

 



 79

where ‘A’  of the image segment represents the area in meter2 and is given as: 

 

A = (Nr.Nc)(GSDx0.0254)2            (6.7) 

 

          Thus once the CFAR is determined, the ‘Pf’ gets fixed. Corresponding to this ‘Pf,’ 

the inverse mapping of the CDF, that would give the threshold, can be found as follows. 

 

          Let F(x) be the CDF of the modeling distribution , and ‘Pf’ be the probability 

of false alarms obtained from the Equation 6.6, then the threshold, ‘T,’ can be obtained 

as: 

)(xf

 

( ) ( )[ ] ( )ff PFPxFT −=−== − 11arg 1 .                                                               (6.8) 

 

          Here, can be any modeling distribution. In this thesis, two parameter Beta, two 

parameter Gamma and modified two parameter Beta distributions have been used for 

determining the threshold by inverse mapping of the CDF. In case of the Beta 

distribution, it is necessary to apply the reverse transformation [i.e. 

)(xf

T
T
−1

] to get the 

correct threshold for the RX detection statistic. This transformation is not required for the 

Gamma distribution that is represented by the RX statistic ‘r.’ Please see Section 5.2 for 

the discussion of detection statistic, ‘r’ and ‘ x .’ 

 

6.4. PERFORMANCE EVALUATION  

          The Chi-Square test has been used to evaluate the performance of the distributions 

for the threshold analysis. The Chi-Square test employed for the threshold analysis is a 

little different from the one used for obtaining the results in the previous section (Section 

5.4.2). The low value of CFAR (10-1 to 10-3) corresponds to the tail of the pdf. For the 

threshold analysis, only the targets that correspond to a CFAR of 0.1 or lesser are 

considered, since the threshold analysis is performed in this low CFAR region. 
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          This Chi-Square test was performed at the confidence level of 95% for the three 

distributions shown in the Table. The results were as shown in Table 6.1. 

 

 

                  Table 6.1. Pass Percentages for Threshold Analysis for CFAR ≤ 0.1 

 

                        

           

 

 

           

Distribution Pass Percentages (%) for RX samples 

Gamma 2-Parameters 28.00 

Beta 2-Parameters 19.44 

Modified Beta 2-Parameters 67.36 
 

 

 

          The results show that the performance of the modified two parameter Beta model is 

superior to the other two models in the tail region. This is basically because of the 

introduction of the parameter ‘N.’ However the pass percentage is still much lower than 

95% which would be expected for a 95% confidence level. The reason for this is the fact 

that the number of targets at the CFAR of 0.1 FA/m2 is quite small and the observation is 

noisy.  Better results may be expected if a bigger area is considered for background 

modeling as would be available from newer stair-step collection.  

 

6.5. SELECTION OF NUMBER OF CLASSES  

          The following approach has been adopted for the selection of the number of 

classes. The modeling is started with one class and the Chi-Square test is performed on 

the model. If the test passes, the next frame is modeled otherwise the modeling is 

repeated for the current frame with two classes. After modeling with two classes, the 

parameters are stored along with the number of classes. 
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6.6. RESULTS—MODELING 

          This section shows the modeling of the detection statistics. In Figures 6.1 and 6.2, 

the histogram of the samples is shown in red color. The samples are the values of the 

detection statistic, ‘ x .’ Please see Section 5.2 for the discussion of the detection statistic 

‘ x .’ Figure 6.1 shows the fit of the three distributions discussed. Figure 6.2 shows a 

closer look at the tail region of the pdf in Figure 6.1. The model that models the tail best 

would perform the best for the adaptive CFAR threshold selection in the low CFAR 

region. In Figure 6.1, parts (a) and (c) show the registered image from the May 2003 data 

whereas parts (b) and (d) show the modeling using two parameter Beta, two parameter 

Gamma and the modified two parameter Beta distributions.  

 

          From the figures showing the modeling results, it is very clear that the modeling 

performance of the modified two parameter Beta distribution is superior to that of the two 

parameter Beta and Gamma distribution in the tail region. This is mainly because of the 

introduction of the parameter ‘N,’ that needs to be considered because of the modification 

due to the non-max suppression. The modified two parameter Beta distribution takes the 

parameter ‘N’ into consideration whereas the two parameter Beta and Gamma 

distributions do not. Please see Section 5.3 for the discussion on the parameter ‘N.’ This 

is also the reason for poor performance of the two parameter Beta and Gamma models in 

table 6.1. 

 

          Note that a low CFAR in the range of 10-2 to 10-3 is of interest and it corresponds to 

the tail region of the pdf. Because the modeling performance of the modified two 

parameter Beta model is superior in the low CFAR region, this model is best for the 

adaptive CFAR threshold selection analysis. This is also shown by the results of the next 

section, where the results using the modified two parameter Beta model agree well with 

the predicted results. 

 

 

 

 



 82

   
     (a) Registered Image with Mines                                  (b) Modeling 

 

 

 

   
 (c) Background Only Registered Image                            (d) Modeling 

  Figure 6.1. Modeling of Detection Statistic By Different Distributions—May 2003 data. 
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                                 (a) Tail Region for Modeling in Figure 6.1 (b) 

  

 

                      
                                (b) Tail Region for Modeling in Figure 6.1 (d) 

            Figure 6.2. Expanded view of the tail region of modeling in Figure 6.1 
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6.7. RESULTS—CFAR THRESHOLD SELECTION 

          This section shows the results of the threshold analysis that has been performed for 

the May 2003 data. The result has been calculated on the dataset Y1G01P3LIN, and the 

results are shown for following three values of CFAR:  

 

(1) 0.1 

(2) 0.01 

(3) 0.004  

 

          Figures 6.3-6.5 (a) show the threshold obtained for a given value of CFAR. The 

number of targets that are above this threshold are shown in Figures 6.3-6.5 (b). Figures 

6.3-6.5 (c) and (d) show the histogram of the targets for the two parameter Beta and the 

modified two parameter Beta model respectively. 

 

          The histogram of the targets is a good measure to judge the modeling performance 

of the distributions for a given CFAR value. For example in case of the CFAR value of 

0.1, the predicted number of false alarms per frame is 255x0.1 ≈ 25. (Here 255 is the area 

per frame, ‘A,’ as shown in Equation 6.7) From Figure 6.3, it can be seen that the 

histogram of the two parameter Beta model is centered near 40 whereas the histogram of 

the modified two parameter Beta model is centered near 25 which is very close to the 

expected value of about 25. This tells that the performance of the modified two parameter 

Beta model is better than that of the two parameter Beta model for the CFAR of 0.1. 
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               (a) Threshold Determination                     (b) Targets Above the Threshold 

 

       
          (c) Histogram (Beta 2-parameters)       (d) Histogram (Modified 2 Parameter Beta) 

                          Figure 6.3. Adaptive Threshold Determination for CFAR = 0.1 

 

 

          Ideally, the RX threshold across a run is expected to be almost constant, but due to 

the non-homogeneities of the data, there are significant variations in the threshold. This 

can be seen from the results. For example it can be seen that the threshold obtained for 

the frame nos. 160 to 190 is somewhat different from the threshold obtained for other 

frames in the dataset. On observing the dataset, it can be seen that these frames represent 

the regions that are highly non-homogeneous as compared to the regions represented by 

the other frames of the dataset. 
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               (a) Threshold Determination                    (b) Targets Above the Threshold 

 

      
          (c) Histogram (Beta 2-parameters)       (d) Histogram (Modified 2 Parameter Beta) 

                     Figure 6.4. Adaptive Threshold Determination for CFAR = 0.01 

 

 

          It can be seen from the Figures 6.3-6.5 (a) and (b) that as the CFAR value 

decreases, the threshold obtained increases and the number of targets above the threshold 

decreases. This is because a low value of CFAR corresponds to the tail region of the pdf. 

As one approaches the tail region, the CDF value of the distribution approaches one. 

Because the threshold is obtained from the inverse mapping of the CDF, the threshold 

value increases as the CDF value approaches one. 
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               (a) Threshold Determination                    (b) Targets Above the Threshold 

 

      
          (c) Histogram (Beta 2-parameters)       (d) Histogram (Modified 2 Parameter Beta) 

                    Figure 6.5. Adaptive Threshold Determination for CFAR = 0.004 

 

 

          The CFAR of 0.1 corresponds to about 25.5 targets (255x0.1). The histogram of 

the modified two parameter Beta model is centered very close to this value. The CFAR of 

0.01 corresponds to about 2.55 targets (255x0.01). The histogram of the modified two 

parameter Beta model is centered at 4 which is about 1 target higher. Finally, the CFAR 

of 0.004 corresponds to about 1 target (255x0.004) and the histogram of the modified two 

parameter Beta model is centered at 2 targets which is again 1 target higher. For the low 

value of CFAR (10-2 to 10-3), the modeling results are away by just 1 target. This is fine 
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because for such a low value of CFAR, it is possible to have 1 extra target in the given 

region.  In terms of the anomaly detector, the CFAR is of the order of 10-2 to 10-1. The 

targets detected at the threshold corresponding to this CFAR would be passed to a False 

Alarm Mitigation (FAM) scheme, the aim of which is to reject the false alarms.   

           

          From the above plots, it is evident that the predicted number of targets 

corresponding to a given CFAR agrees well with the modeling results obtained from the 

modified two parameter Beta model. The superior performance of this model is because 

of the fact that it takes the parameter ‘N’ into consideration, while the two parameter 

Gamma and Beta models do not. 

 

6.8. CONCLUSIONS 

          This section discussed the need for the adaptive CFAR threshold selection and 

shows the application of the modeling of the detection statistic in performing adaptive 

CFAR threshold selection. For the adaptive CFAR threshold selection, good modeling in 

the low CFAR (10-2 to 10-3) region is required. It has been shown that the modified two 

parameter Beta distribution has the best performance in the low CFAR region and 

therefore it is best suited for performing the adaptive CFAR threshold selection. Results 

obtained are in good agreement with the predicted results.  
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7. CONCLUSIONS AND FUTURE WORK 

 

          In this thesis, the EM algorithm is investigated and used for various applications. In 

Sections 3 and 4 the algorithm is used to model the background data and segment the 

image into classes. The concept of class membership is used to implement the SEM-

based anomaly detectors. The results for segmentation were good. The SEM-based 

anomaly detectors performed well and in the case of buried mines their performance was 

slightly better than that of RX. 

 

          In Sections 5 and 6, the EM algorithm was used to model the detection statistic of 

the anomaly detector. This modeling was then used to perform the adaptive CFAR 

threshold selection to determine the optimum number of targets for the given CFAR. 

Here also the modeling results were very good. The results showed that the detection 

statistic can be very well modeled with the two parameter Gamma and Beta distributions. 

The results of the adaptive CFAR threshold selection performed using the modified two 

parameter Beta model were in good agreement with the expected number of targets.  

 

          While implementing the EM algorithm, it has been observed that sometimes a large 

number of iterations are needed before the algorithm converges to a steady-state value. In 

literature, different methods are mentioned to speed up the convergence of the algorithm. 

Some of these are mentioned in [1]. In future, these methods can be employed to speed 

up the convergence of the EM algorithm. This would directly reduce the amount of time 

needed to process the applications that use the EM algorithm to model the data.  

 

          The EM-based segmentation could be tested on multi-band data. This would help 

segmenting the image based on spatial and spectral correlation. Practical issues such as 

consistency of class assignment over consecutive frames need to be addressed. Better 

methods for selecting the number of classes must be studied. 
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          This appendix has two sections. The first section presents the various distributions 

and the corresponding update equations. The second section explains how these update 

equations are used to estimate the parameters of the mixture model. 

 

A.1. UPDATE EQUATIONS  

          In this section, the distributions of the various models are given. The partial 

derivatives that are used to obtain the update equations are also presented for the various 

mixture models.  

 

Please refer to the following terminology for all the equations presented in this section. 

 

n  = Number of samples 

g = Number of classes 
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where  denotes natural logarithm and is the probability that the jth (( )xlog ijz j  = 1, 2... 

) sample arose from the ith ( i  = 1, 2... n g ) class. For all the mixture models, the 

coefficient of the ith ( i  = 1, 2... ) class, g iπ , is given by: 

 

n

z
n

j

ij

i

∑
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          Let the partial derivative of the cost function, ‘Q’, with respect to some parameter 

‘ϕ ’ (that is to be estimated from the data) be given by 
ϕ∂
∂Q , then the update equation for 

this parameter is given by:  
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where, ‘E’ is the expectation operator. 

 

A.1.1. Gaussian Mixture Model, ( )Σ,: μxN  

          Here, ‘μ ’ is the mean, ‘Σ ’ is the covariance matrix and ‘d’ is the dimensionality 

of the data, ‘ x .’ The multivariate Gaussian distribution is given as: 
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          The ML estimates of the parameters of a Gaussian mixture model are given by: 
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A.1.2. Two Parameter Beta Model, ( )ηγ ,:xBeta . 
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A.1.3. Three Parameter Beta Model, ( )ληγ ,,:xBeta . 
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A.1.4. Modified Two Parameter Beta Model, ( )NxBeta ,,: ηγ . 
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Then the modified two parameter Beta model is given by: 
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where F2(x) is the cumulative distribution function of .  )(2 xf
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Here all the integrals ‘ ’ are same as defined previously with the parameter uI 1=λ   
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A.1.5. Modified Three Parameter Beta Model, ( )NxBeta ,,,: ληγ . 
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Then the modified three parameter Beta model is given by: 
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where F3(x) is the cumulative distribution function of  and ‘K’ is given by: )(3 xf
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A.1.6. Two Parameter Gamma Model, ( )λ,: kxGamma . 

 

)(xf  = ( )k
ex xkk

Γ

−− λλ 1

 0,k ; 0   ,  >∞<≤ λx                                                     (A.32) 

 

( )[ ]
k

xf
∂

∂ log  =                                                  (A.33) ( ) ( ) ( )[ kxz
g

i

ij Ψ−+∑
=

loglog
1

λ ]

 

( )[ ]
λ∂

∂ xflog  = ⎥⎦
⎤

⎢⎣
⎡ −∑

=

xkz
g

i

ij λ
1

                                                                         (A.34) 

 

A.2. PARAMETER ESTIMATION FROM THE UPDATE EQUATIONS  

          In this section, the application of the update equations to estimate the set of 

parameters of the mixture model is shown. Let us consider the estimation problem of the 

three parameter Beta distribution, Beta( ληγ ,,:x ) 

 

          Once the update equations are obtained, the information matrix is formed. The 

information matrix, ‘Im,’ is a square matrix with the dimension ‘p,’ where ‘p’ is the 

number of parameters to be estimated. In the case of Beta( ληγ ,,:x ), p = 3. Each 

diagonal element of the information matrix is the derivative of the log-likelihood of the 

complete data with respect to the estimated parameter. Thus, in the case of 

Beta( ληγ ,,:x ), this matrix is obtained as follows: 
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where  is the log-likelihood of the complete data. )](log[ xf

 

          The value of the off-diagonal elements of the information matrix, ‘Im’ gives the 

dependence of one parameter over the other [49]. In case of the EM algorithm, since the 

parameters are often assumed to be independent, the off-diagonal elements can be taken 

to be zero. Let  be the estimates of the parameters in the kth iteration, then the 

estimate of these parameters in the (k+1)th step is given by: 
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          This new estimate of the parameters  is used to calculate the log-

likelihood function again in the next iteration. This new log-likelihood function is again 

maximized to get the new set of parameters  in the (k+2)th iteration. 

The process continues until the parameters converge to a steady state value. Please see 

section 2.5 for further details on the calculation of the log-likelihood function. 
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APPENDIX—B 

TEST STATISTICS TO MEASURE GOODNESS OF FIT 
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          This appendix discusses some of the tests to measure goodness of fit. 

B.1. CHI-SQUARE TEST  

          After the visual inspection of the modeling results, it is worthwhile to have a 

quantitative analysis of the performance of the different models. One such comprehensive 

test is the Chi-Square test. It has the following test statistic [45]: 
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where, 

 = Test Statistic 

 =  Observed value for ith observation 

 =  Estimated value for ith observation 

  n =  Number of observations 

          Sometimes a correction known as the “Yates correction” is also applied to account 
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for the quantization error. The Yates correction is introduced as a correction for 

discontinuity. In that case, the test statistic is modified as: 

( )∑
=

⎥
⎦

⎤
⎢
⎣

⎡
=

n

i i

ii

E
| - c - E|Oχ

1

2
2                                                                                   (B.2) 

c’ is the Yates correction and generally c = 0.5 

reshold is calculated as follows. 

First the samples are grouped in bins in such a way that there is at least a certain number 

                                                                                                   (B.3) 

where ‘

          The degree of freedom required to calculate the th

of samples per bin. If the number of bins are ‘ bn ’ and there are ‘p’ parameters that have 

been estimated from the data, then the degrees of freedom, ‘ v ,’ is given as: 

( )1+−= pnv b
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The hypothesis H0 : X ~ F is rejected if 2
1

2 χχ ≥  α−

B.2. CRAMER VON-MISES (CVM) TEST 

The test statistic for this test is given as [45]: 
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 n = Number of observations. 

 

⎡ −n i1

where, 

( )θ;:1 nxF  = CDF of the ordered observations, given θ. 

 θ  = Parameter vector of the given distribution. 

          Here, CDF is the Cumulative Distribution Function. An approximate size ‘α’ test 

0 0  1- α. The critical values, CM1- α, are given in [45] 

ers are estimated from the 

data then the value of ‘

of H : X ~ F is to reject H if CM ≥ CM

for several values of ‘α’ and censoring levels. If the paramet

θ ’ is replaced by its maximum likelihood estimate. 

B.3. KOLMOGOROV-SMIRNOV (KS) OR KUIPER TEST 

ic let us assume 

 

In order to study this statist that [45], 

 n = Number of observations. 

( )θ;:1 nxF  = CDF of the ordered observations, given ‘θ .’ 

 θ  = Parameter vector of the given distribution. 
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( )−+= DDD ,max               
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iven by ‘D’ is known as the “Kol

and the statistic given by ‘V’ is known as the “Kuiper” statistic. Here also, the ‘α’ test of 

0 : X ~ F is to reject H0 n in 

r several values of ‘α’ and censoring levels. 
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          The statistic g mogorov-Smirnov” or “KS” statistic 

H   if KS ≥ KS1- α. The critical values for this statistic are give
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	1.1. THE EM ALGORITHM
	          The EM algorithm is a technique for maximum likelihood estimation in situations best described as incomplete data problems [1]. It is so called because of its two important steps—Expectation (E step) and Maximization (M step). The EM algorithm seeks to iteratively compute the maximum likelihood estimates and it is very useful in situations where algorithms such as Newton-Raphson, Prediction-Error, Sliding Window and Least-Squares turn out to be tedious and time consuming. EM has specifically gained importance because in certain incomplete data situations, the maximum likelihood estimation can be difficult due to the absence of the data. If the same problem is converted to a complete data problem with additional unknown parameters, then the problem can be solved more easily using EM iterations.
	          Although these incomplete data problems can arise in different situations, this thesis will study the incomplete data problems as applied to mixture models. In background modeling, the background data can be characterized as coming from a set of different probability distributions. This problem is an incomplete data problem in the sense that the class wise association of the data is unknown. Also the proportions of different classes are not known. Thus in these situations the EM algorithm can be applied to distribute the data into classes and to find the class proportions and parameters of distribution in a parametric mixture model. The EM algorithm and its concepts are discussed in detail in Section 2 of this thesis.
	1.2. BACKGROUND MODELING
	          Background modeling is an efficient way to characterize the background data with certain probability distributions. These distributions are in the form of mixture models. Because the data sometimes is of high dimensionality, non-parametric methods of density estimation, such as kernel-based methods, would require large amounts of training data. This makes it important for us to study modeling using parameter estimation. Also, in certain situations parametric modeling makes the analysis more robust. This is because if the system has been modeled using parametric distribution, then any unpredictability can be accounted for by adjusting the parameters of the model based on knowledge from past modeling experiences [6]. 
	          In many problems such as minefield detection, target recognition and echolocation systems, background characterization is required for a proper interpretation and analysis of the data. For example the EM-based anomaly detectors use the mixture model framework, where the concept of pixel membership is used to detect anomalies in the data. Modeling of detection statistic can also be performed. The detection statistic represents the non-homogeneities and spatial correlation in the data, and therefore its modeling into parametric distributions is very important. Modeling of detection statistic also helps in performing adaptive Constant False Alarm Rate (CFAR) threshold selection, which is important for practical detection systems and also for sensor fusion [7]. Modeling of the detection statistic is discussed in Section 5 of this thesis.
	          Background modeling is useful in image segmentation where the image is segmented into various regions. Background modeling is also used in anomaly detection. Here, the concept of data membership is exploited to separate the anomalies that are statistically different from the background. These concepts are discussed in Sections 4, 5 and 6 of this thesis.
	1.3. APPLICATIONS OF BACKGROUND MODELING
	1.4. MINEFIELD DETECTION 
	1.5. OVERVIEW OF THE THESIS 
	2.1. EM—AN INTRODUCTION
	          The EM algorithm is a general purpose algorithm for maximum likelihood estimation in a wide variety of situations best described as incomplete data problems. The incomplete data problems arise, for example, where there are missing data, truncated distributions, censored or grouped distributions and also in situations where the missing data are not evident. One such case is a mixture model, where the class association of the data is unknown. The data is assumed to belong to a parametric mixture model but the proportion of each class is unknown. 
	2.2. MOTIVATION FOR EM 
	          Many attempts have been made to estimate the parameters using the training data. In literature, this has been referred to as a supervised approach. One major drawback of this type of method is that it is unrealistic because many times the training data with reliable class association is unavailable. Therefore, attempts have been made to estimate the parameters using some unsupervised technique, i.e. the one that does not require the training data. EM is one such technique. Statisticians have used EM to estimate parameters for the incomplete data problem because EM works very well for this type of practical problems. In recent times, there has been considerable interest in stochastic model-based image segmentation. Here the image is separated into a set of disjointed regions, and each region is associated with one of a finite number of classes. Each class is assumed to have been modeled as a random field. Because these random fields are often parametric models, an important problem that one is faced with is regarding parameter estimation. Clearly, the parameter estimation problem here is an incomplete data problem, because the observed image is a mixture of several data classes with the class status of each pixel unknown, which means that the correct segmentation is not known.
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	          The EM algorithm estimates the parameters of the mixture model iteratively, starting from some initial guess. Each iteration consists of the following two steps:
	2.5. MATHEMATICAL FORMULATION OF EM
	Let us suppose that for any practical situation:
	          One major weakness of EM is its vulnerability to the initial values, ‘.’ If these are “far” from the actual values, then there may be cases when the algorithm does not converge to the actual value. This happens because the EM algorithm sometimes gets trapped into local maxima, (if it finds one) before the actual global maxima. These are known as saddle points. If this happens, then the parameter values might get stuck to these saddle points, and therefore the parameters may be incorrectly estimated.
	          As seen in the previous section, it is possible for the parameters to converge to a saddle point rather than a global point. This depends a lot on the type of log-likelihood function. If the log-likelihood function is uni-modal, then the convergence of the likelihood function and the parameters is unique. If the likelihood function is not uni-modal, then in that case the likelihood function and the parameters might converge to some saddle point. 
	2.8. SELECTION OF NUMBER OF CLASSES
	          Choosing the number of classes is an important issue in the EM-based applications. However no fully general and satisfactory solution seems available. The most common approach of selecting the number of classes is based on the log-likelihood of the samples given the number of classes [41]. Let ‘’ be the data, ‘g’ be the number of classes and ‘’ be the parameters of the mixture model that are estimated from the data. Then a criteria based on log-likelihood has been given in [42] using the Bayesian Information Criteria (BIC) approximation. This is given by:  
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	          The EM algorithm has seen wide applications in different fields. Some of the applications where the EM algorithm and its variants are widely used are the following:
	2.10. CONCLUSIONS
	          This Section discussed the underlying concepts of the EM algorithm. It also showed the mathematical formulation of the algorithm. The application of the EM algorithm in estimating the mixture model is discussed. Applications of the EM algorithm in various fields are also presented. 
	3.1. INTRODUCTION
	3.2. SEGMENTATION—SINGLE PIXEL
	3.3. SEGMENTATION—SPATIAL DISTRIBUTION
	3.4. PIXEL LEVEL CLASS ASSIGNMENT 
	3.5 RESULTS—SEGMENTATION USING SINGLE PIXEL 
	3.6. RESULTS—SEGMENTATION USING SPATIAL DISTRIBUTION 
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